با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده کشاورزی، دانشگاه شیراز

2 دانشیار، دانشکده کشاورزی، دانشگاه شیراز

چکیده

تخریب منابع طبیعی و محیط زیست از مهمترین دغدغه‌­ها در مناطق مختلف جهان خصوصا نواحی خشک می‌­باشد. به‌­طوری ­که سطوح وسیعی از این اراضی در طیف گسترده­ای از فرایندهای تخریب در حال نابودی است. از این‌رو، ارزیابی و تهیه نقشه آسیب­‌پذیری به زوال پوشش گیاهی در ایران می‌­تواند برنامه‌های مدیریتی و اجرایی را تسهیل کند. در پژوهش حاضر، معیار­های مورد استفاده در یک مدل جدید برای ارزیابی زوال پوشش گیاهی به­‌نام NIDLTS معرفی می‌­شوند­. این معیارها شامل معیار­های طبیعی Natural Causes (N)، معیار­های غیرمستقیم انسانی Indirect Causes (I)، معیار­های مستقیم انسانی  Direct Causes(D)، معیار فشار دام  Livestock pressure(L)، معیار روند تغییراتTrend of degradation  (T) و معیار وضعیت  State indicators(S) هستند که برای برآورد هر یک، از تعدادی شاخص خطر استفاده شد. معیار­های طبیعی مورد مطالعه، عبارت از تغییرات آب و هوایی، خشکسالی، اقلیم و قابلیت تناسب اراضی بودند. همچنین، شاخص‌های انسانی مورد مطالعه شامل تراکم جمعیت، رشد جمعیت، هزینه­‌های دولتی از پژوهش‌های و کارهای اجرایی­، تبدیل اراضی منابع طبیعی به اراضی کشاورزی­، درصد بیکاری و درصد بی‌سوادی و شاخص وضعیت مورد مطالعه عبارت از درصد تاج‌پوشش، تولید بیوماس فعلی و تولید بیوماس فعلی به پتانسیل بود. شاخص­‌های خطر مرتبط با هر معیار تخریب به پنج طبقه تقسیم شده، با استفاده از AHP، وزن هر شاخص و هر معیار اصلی در چهارچوب NIDLTS مشخص شد که با بررسی سهم و اثر آن­‌ها در زوال پوشش گیاهی نوعی اولویت­‌بندی انجام گرفت و در نهایت با روی‌هم­‌گذاری کلیه لایه‌­های تهیه شده برای هر معیار در محیط GIS، نقشه آسیب­‌پذیری به خطر زوال پوشش گیاهی تهیه شد. نتایج حاصل از این پژوهش نشان داده است که در بین عوامل انسانی، تبدیل اراضی منابع طبیعی به کشاورزی از بیشترین اهمیت برخوردار بوده است. در عین حال، در بین عوامل طبیعی، خشکسالی از بیشترین اهمیت در منطقه مورد مطالعه برخوردار بود. در بین تمامی معیارهای مورد بررسی، معیار طبیعی بیشترین تاثیر و معیار روند تغییرات اراضی منابع طبیعی در طول زمان کمترین تاثیر را در زوال پوشش گیاهی داشت. نقشه خطر نهایی تهیه شده نشان می‌­دهد که بیشترین سطح حوضه را طبقه خطر متوسط و سپس، بدون خطر فرا گرفته است. به نظر منطقی می‌آید که مدل پیشنهادی NIDLTS برای ارزیابی خطر زوال پوشش گیاهی با در نظرگیری جامع شرایط اکولوژیکی و شناسایی روند خطر، برآورد دقیق­‌تری از میزان زوال و تخریب گیاهی نسبت به بعضی از ارزیابی­‌ها که فقط وضعیت فعلی تخریب پوشش گیاهی را در نظر می­‌گیرند، ارائه می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

The assessment of vegetation degradation hazard using a new method of NIDLTS and GIS, case study: Tange Bostanak Basin, Fars Province

نویسندگان [English]

  • Elham Afrough 1
  • Masoud Masoudi 2
  • Seyed Yousef Erfanifard 2

1 MSc, Department of Natural Resources and Environmental Engineering, Shiraz University, Iran

2 Associate Professor, Department of Natural Resources and Environmental Engineering, Shiraz University, Iran

چکیده [English]

Destroying natural resources and environment is one of the most important problems in different regions around the world, especially in arid zones. So that extent areas of these zones are being destroyed in extensive spectrum of these destruction processes. For this reason, evaluating and providing vulnerability map of vegetation degradation in our country can considerably help the management and executive planning. In the present research, the criteria used in a new model called NIDLTS are proposed for evaluating the vegetation degradation. These criteria are natural index(N), human indirect index (I), human direct index (D), livestock pressure (L), trend of degradation (T) and state indicators (S). In order to estimate each criterion, a number of risk index were used. Natural indices studied in this research were climate change, draught, climate and suitability of lands. Human indices which were studied are population density, population growth, governmental expenses from executive works and researches, changing natural resources land to agricultural lands, percentage of unemployment, percentage of illiteracy. The indices of studied status are percentage of crown cover, production of the present biomass and production of the present biomass to the potential. Hazard index related to each destruction group were classified in to five classes of hazard intensity with numerical values in order to be analyzed in GIS. Then, the weight of each index and each main group of NIDLTS framework were calculated by Hierarchy Analysis Process (AHP); so that giving priority was done through investigating their share and effects in the vegetation decline. Finally, the vulnerability map of vegetation risk was generated through overlaying all the layers for each criterion in GIS. Results showed that among the human factors, the changing land use from natural resources to agriculture is the most important factor, whereas among the natural factors, drought is the most important factor in the study area. Also, among all the criteria, natural index has the highest effect and the trend of degradation of natural resources lands has the lowest effect in the vegetation degradation during the time. The final hazard map showed that the most widespread hazard class is moderate, followed by no-hazard in the region. It seems logical that the proposed model of NIDLTS for assessing the hazard of vegetation degradation can provide a more accurate estimation of vegetation degradation in a region with taking into consideration of the ecological, anthropogenic and hazard trend in comparison with some other evaluations that only consider the current state of vegetation degradation.

کلیدواژه‌ها [English]

  • AHP
  • GIS
  • NIDLTS
  • Risk index
  • Vegetation degradation
  1. Amiri, E. 2008. Hazard assessment of vegetation degradation using DPSIR indicators. MSc Thesis, College of Agriculture, Shiraz University, 145 pages (in Persian).
  2. Asma, A.A., S.A. Anwar, K.A. Waleed, A.E. Nabil and A.R. Mahmmod. 2002. Desertification in the Arab region, analysis of current status and trends. Journal of Arid Environments, 51: 521–545.
  3. Bakr, N., D.C. Weindorf, M.H. Bahnassy and M.M. El-Badawi. 2012. Multi-temporal assessment of land sensitivity to desertification in a fragile agroecosystem. Environmental Indicators, Ecological Indicators, 15: 271-280.
  4. Eloun, H., J. Ghorbani, M. Shokri and Z. Jafarian 2007. Vegetation composition in two rangelands and adjacent cultivated lands in a part of Tangab Dam sub-basin in Firozabad at Fars Province. Rangeland Journal, 1 (4): 370-384 (in Persian).
  5. Farajzadeh, M. and M. Nikeghbal. 2007. Evaluation Medalus model for desertification hazard zonation using GIS, study area: Iyzadkhast Plain, Iran. Journal of Biological Sciences, 10(16): 2622- 2630.
  6. Fox, J.W. 2003. The long–term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity. Oikos, 102: 630-640.
  7. Haidari, N. 1998. Socioeconomic analysis and analysis of the implementation of foresters’ consolidation plan and exit of forestry trap in the Lafour region. MSc Thesis, Tarbiat Modares University, 128 pages (in Persian).
  8. Khorshidi, M. and N. Ansari. 2003. Knowledge of awareness of nomads and villagers to damage natural resources and its factors in Bazaft district of Chaharmahal Bakhtiari Province. Iranian Journal of Range and Desert Research, 10(1): 95-109 (in Persian).
  9. Masoudi, M. and E. Amiri. 2015. A new model for hazard evaluation of vegetation degradation using DPSIR framework, case study: Sadra region, Iran. Polish Journal of Ecology, 63: 1–9.
  10. Masoudi, M. 2010. Risk assessment and remedial measures of land degradation in parts of southern Iran. Lambert Academic Publishing, Germany, 234 pages.
  11. Masoudi, M. and E. Asrari. 2006. A new model for assessing livestock pressure: a case study in southern Iran. Ecology Environment and Conservation, 12(3): 391-398.
  12. Mirsanjari, M. 2003. Desert and the threat to the environment. Forest and Rangeland Journal, (58): 26-30.
  13. Mosadegh, A. 2003. Destroying the global environment and the future of the world. Agricultural Science Publishing, Tehran, 212 pages (in Persian).
  14. Munson, S.M., R.H. Webb and A. Hubbard. 2011. A comparison of methods to assess long term changes in Sonoran Desert vegetation. Journal of Arid Environments, 75: 1228-1231.
  15. Pan, C. and Z. Shangguan. 2006. Runoff hydraulic characteristics and sediment generation in sloped grass plots under simulated rainfall conditions. Journal of Hydrology, 331: 178-185.
  16. Peng, J., Z. Liu, Y. Lui, J. Wu and Y. Ha. 2012. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst exponent. Ecological Indicators, 14: 28-39.
  17. Raab, D. and S.E. Bayley. 2012. A vegetation-based index of biotic integrity to assess marsh reclamation success in the Alberta oil sands, Canada. Ecological Indicators, 15: 43-51.
  18. Veron, S.R., J.M. Paruelo and M. Oesterheld. 2006. Assessing desertification. Journal of Arid Environments, 66: 751-763.
  19. Wang, Z., C. Duan, L. Yuan, J. Ro, Z. Zhou, J. Li, C. Yang and W. Xu. 2010. Assessment of the restoration of a degraded semi-humid evergreen broadleaf forest ecosystem by combined single-indicator and comprehensive model method. Ecological Engineering, 36: 757-767.
  20. Xu, D.Y., X.W. Kang, D.F. Zhuang and J.J. Pan. 2010. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification: a case study of the Ordos Plateau, China. Journal of Arid Environments, 74: 498-507.
  21. Zehtabian, Gh., H. Ahmadi, H, Khosravi and A. Rafiee Emam. 2005. Methodology of desertification mapping using the Medalus model in Iran. Desert, 10(1): 205-223 (in Persian).
  22. Zhao, H.L., X.Y. Zhao, R. Zhou, T.H. Zhang and S. Drak. 2005. Desertification processes due to heavy grazing in sandy rangeland Inner Mongolia. Journal of Arid Environments, 62: 309-319.
  23. Zucca, C., R. Della Peruta, R. Salvia, S. Sommer and M. Cherlet. 2012. Towards a world desertification atlas, relating and selecting indicators and data sets to represent complex issues. Ecological Indicators, 15: 157-170.