با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، بخش مهندسی آب و مرکز پژوهش‌های علوم جوی و اقیانوسی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 استادیار، بخش مهندسی آب و مرکز پژوهش‌های علوم جوی و اقیانوسی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

مقدمه
ابرها نقش حیاتی در تعادل انرژی زمین ایفا می‌کنند و تغییر در ویژگی‌ها، فراوانی و توزیع آنها می‌تواند بازخوردهای مثبت یا منفی بر گرمایش جهانی داشته باشد. تشکیل ابر و تأثیر آن بر آب‌وهوای کره زمین پیوسته از مباحث مورد توجه در علوم زیست‌محیطی است که با تأثیر بر بیلان انرژی کره زمین و در نتیجه تغییر در الگوهای همرفت و تشکیل و توزیع ابر می‌تواند اثرات مهمی بر چرخه آب جهانی نیز داشته باشد. ابرناکی کل به‌میزان پوشش هر نوع ابر در آسمان اشاره دارد و این مفهوم برای توصیف مقدار آسمانی که توسط ابرها پوشیده شده است، استفاده می‌شود. پوشش ابر بر حسب اکتا یا هشتم آسمان بیان می‌شود و دامنه‌ای بین صفر تا نه دارد. هدف این پژوهش، مقایسه مکانی و زمانی تغییرات معنی‌دار پوشش ابر کل در مقیاس فصلی و طی شش دهه در گستره ایران است که این مهم بر پایه تحلیل آماری و مشاهده‌ای نتایج طی دوره آماری برگزیده انجام پذیرفته است. با توجه به ویژگی‌های اقلیمی ایران، فصل تابستان که عموماً با پایداری جو، کم‌بارشی و پوشش ابری بسیار اندک همراه است، از دامنه بررسی حذف شد تا تمرکز پژوهش بر فصولی قرار گیرد که بیشترین فعالیت جوی و تغییرات پوشش ابری را تجربه می‌کنند.
 
مواد و روشها
داده‌های باز تحلیل ماهانه پوشش ابری کل استخراج شده از مرکز اروپایی ‌ECMWF، نسخه ERA5 و با تفکیک مکانی 0.25 درجه منبع داده مورد استفاده در این پژوهش است. بازه زمانی مورد مطالعه دوره 60 ساله بین سال‌های 1961 تا 2021 است. با میانگین‌گیری از داده‌های ماهانه (سه ماه در هر فصل)، سری زمانی ابرناکی کل به‌صورت فصلی طی 60 سال تهیه شد. برای هر فصل طی شش دهه مورد پژوهش توزیع ابرناکی کل با دیگر دهه‌ها برای هر شبکه مورد مقایسه قرار گرفت. تعیین معنی‌داری تفاوت ابرناکی هر دهه از دهه‌های مورد مقایسه برای هر شبکه با شبکه متناظر بر اساس آزمون من-ویتنی و با تکرار و حذف رخدادهای تصادفی به‌روش مونت‌کارلو با 10000 تکرار و در سطح معنی‌داری 95 درصد انجام گرفت و مقادیر تفاوت معنی‌دار به‌صورت درصد نمایش داده شد.
 
نتایج و بحث
بررسی میانگین اقلیمی 60 ساله ابرناکی در گستره ایران نشان دهنده الگوی کاهشی شیب تغییرات ابرناکی کل از شمال غرب به جنوب شرق کشور در فصول بهار، پاییز و زمستان است. مقایسه توزیع فصلی ابرناکی کل در ایران نشان داد که تغییرات ابرناکی بهاره به‌طور معنی‌داری در مناطق جنوب و جنوب غرب کشور افزایش یافته است، درحالی‌که در شمال شرق، شرق و جنوب شرق کاهش قابل توجهی مشاهده می‌شود. در پاییز، تغییرات معنی‌دار محدود به مناطقی کوچک از شمال کشور بوده و بیشتر مناطق تغییرات قابل ملاحظه‌ای نشان نمی‌دهند. اما در زمستان، کاهش ابرناکی به‌صورت گسترده‌ای در سراسر کشور، به‌ویژه در مناطق زاگرس و جنوب غرب، نمایان است. این کاهش در دهه ششم (2021-2011) نسبت به دهه‌های قبلی شدت بیشتری داشته و شامل مناطقی با ابرناکی متوسط تا زیاد است.
 
نتیجه‌گیری
بررسی تغییرات معنی‌دار ابرناکی کل نشان داد که در فصل بهار چرخه‌های کاهشی و افزایشی معنی‌دار در مقایسه دهه‌های مختلف قابل‌مشاهده است که این تغییرات بیشتر در مناطق خشک و نیمه‌خشک شرق و جنوب شرق کشور قابل مشاهده بود. لذا، در پژوهش‌های آتی، مطالعه تغییرات احتمالی در تشکیل و ورود سامانه‌های بارشی مؤثر بر منطقه می‌تواند مورد توجه قرار گیرد. در فصل پاییز، تغییرات معنی‌دار ابرناکی به‌ندرت مشاهده شد که ضرورت بررسی تغییرات ماهانه ابرناکی برای تشخیص نوسانات احتمالی ابرناکی پاییزه را برجسته می‌کند. برای فصل زمستان، کاهش گسترده و معنی‌دار ابرناکی به‌ویژه در دهه ششم نسبت به پنج دهه پیشین از اهمیت ویژه‌ای برخوردار است. به‌طوری‌که در مقایسه دهه پنجم و ششم کل گستره کشور با کاهش معنی‌دار ابرناکی مواجه بوده است. این مهم در بحث بیلان انرژی و همچنین بررسی تغییرات احتمالی در ریزش‌های جوی زمستانه می‌تواند مورد توجه پژوهش‌های آتی باشد. تغییرات دوره‌ای ابرناکی مشاهده شده در این پژوهش، پیامدهایی برای مدیریت منابع آب، کشت دیم و تبخیر و تعرق می‌تواند داشته باشد و نیازمند پژوهش‌های عمیق‌تر است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of decadal cloud cover distribution fluctuations in spring, autumn and winter in Iran

نویسندگان [English]

  • Fatemeh Heydari 1
  • Foroogh Golkar 2

1 MSc Student, Department of Water Engineering and Oceanic and Atmospheric Research Center, Faculty of Agriculture, Shiraz University, Shiraz, Iran

2 Assistant Professor, Department of Water Engineering and Oceanic and Atmospheric Research Center, Faculty of Agriculture, Shiraz University, Shiraz, Iran

چکیده [English]

Introduction
Clouds play a vital role in Earth’s energy balance, and changes in their properties, frequency, and distribution can have either positive or negative feedback effects on global warming. Cloud formation and its impact on the Earth’s climate remain key topics in environmental sciences. By influencing the global energy budget, clouds alter convection patterns and cloud distribution, significantly affecting the global water cycle. Total cloudiness refers to the extent of coverage by any type of cloud in the sky, and this concept is used to describe the proportion of the sky covered by clouds. Cloud cover refers to the fraction of the sky covered by any type of cloud, typically expressed in oktas, ranging from 0 to 9. The aim of this study is to conduct a spatial and temporal analysis of significant changes in TCC on a seasonal scale over six decades across Iran. This analysis is based on statistical and observational evaluations during the selected study period. Due to Iran’s climatic characteristics, summer season—which is generally associated with atmospheric stability, low precipitation, and minimal cloud cover—was excluded from the scope of the study, this allows the research to focus on the seasons that experience the most atmospheric activity and variations in cloud cover.
 
Materials and methods
The monthly total cloud cover data used in this study were extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset, with a spatial resolution of 0.25°. The study period spans 60 years (1961–2021). By averaging the monthly data (three months per season), a seasonal time series of total cloud cover was generated over a 60-year period. For each season the distribution of total cloud cover over the six decades of the study was compared across different grid points. The significance of differences in cloud cover for each decade compared to other decades at each grid point was determined using the Mann–Whitney U test, with randomness mitigated via Monte Carlo randomization technique with 10,000 iterations, at a 95% significance level. Statistically significant differences were expressed as percentages.
 
Results and discussion
Analysis of the 60-year climatological mean of TCC over Iran reveals a decreasing gradient in total cloud cover variability from the northwest to the southeast during spring, autumn, and winter. Comparison of the seasonal distribution of total cloud cover in Iran revealed that spring cloud cover variability has significantly increased in the southern and southwestern regions of the country, while a notable decrease has been observed in the northeast, east, and southeast. In autumn, significant changes are limited to small areas in the northern part of the country, while most regions show no notable variations. However, in winter a widespread significant declines in TCC, particularly across the Zagros Mountains and southwestern Iran. This decline was most pronounced during the sixth decade (2011–2021), affecting regions that historically experienced moderate to high cloud cover.
 
Conclusion
Analysis of significant changes in total cloud cover revealed that during spring, significant decreasing and increasing cycles are observable across different decades, with these variations being most pronounced in the arid and semi-arid regions of the east and southeast of the country. Therefore, in future research, investigating potential changes in the formation and arrival of precipitation systems affecting the region could be considered. In autumn, significant change in cloud cover were rarely observed, highlighting the need to investigate monthly cloud cover variations to detect potential fluctuations in autumn cloudiness. For winter, the widespread and significant reduction in cloud cover, particularly in the sixth decade compared to the previous five decades, is of great importance. Notably, when comparing the fifth and sixth decades, the entire country experienced a significant decrease in cloud cover. These findings is significant for understanding energy balance and potential changes in winter precipitation, and could be a focus of future research. The periodic cloud cover variations observed in this study could have implications for water resource management, rainfed agriculture, and evapotranspiration, necessitating further in-depth research.

کلیدواژه‌ها [English]

  • Iran
  • Mann-Whitney test
  • Monte Carlo method
  • Seasonal cloudiness
  • Total cloud cover
Ahmadi, M., Ahmadi, H., Dadashiroudbari, A.A., 2018. Analyzing the trend of changes and the spatial pattern of annual and seasonal clouds in Iran. Nat. Environ. Hazards 7(15), 239-256 (in Persian).
Akbari, M., Sayad, V., 2021. Analysis of climate change studies in Iran. Nat. Geograph. Res. 53(1), 37-74 (in Persian).
Ceppi, P., Nowack, P., 2021. Observational evidence that cloud feedback amplifies global warming. Proc. Natl. Acad. Sci. U.S.A.118 (30) e2026290118.
Collow, A.B.M., Miller, M.A., 2016. The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon rain forest of Brazil. J. Climate 29(21), 7703-7722.
Demir, U.S., Koc, A.C., 2021. Investigation of the North Atlantic Oscillation and Indian Ocean Dipole influence on precipitation in Turkey with cross-spectral analysis. Atmosphere 12(1), 99.
Dostan, R., Alijani, B., 2016. Climate change in Iran with a synoptic approach. Region. Geograph. Develop. 13(2), 89-113 (in Persian).
Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall/CRC.
Fattahi, E., Rahimzadeh, F., 2009. The relationship between ENSO and Iran's winter atmospheric circulation patterns. Geograph. Develop. 7(15), 21-44 (in Persian).
Frnda, J., Durica, M., Rozhon, J., Vojtekova, M., Nedoma, J., Martinek, R., 2022. ECMWF short-term prediction accuracy improvement by deep learning. Scientific Reports.
Gettelman, A., Sherwood, S.C., 2016. Processes responsible for cloud feedback. Current climate change reports. 2, 179-189.
Ghaedamini, H.A., Nazemosadat, M.J., Morid, S., Mehr Aver, S., 2024. Comparing the S2S hindcast skills to forecast Iran’s precipitation and capturing climate drivers signals over the Middle East. Theoreti. Applied Climatol. 155, 4941-4962.
Ghasemifar, E., Farajzade, M., Ghavidel Rahimi, Y., Akbari Bidokhti, A.A., 2018. Investigating spatio-temporal changes of cloudiness based on geographical features and remote sensing data in Iran. Earth Space Physi. 44(1), 103-124 (in Persian).
Hadi, M., Hashemkhani, M., Iravani, E., 2022. Analysis of the scientific research process in the field of climate change in Iran. Health Environ. 15(2), 361-378 (in Persian).
Hang, Y., 2016. The effect of cloud type on earth’s energy balance. Doctoral dissertation, University of Wisconsin Madison.
Hatami Bahmanbeiglou, K., Movahedi, S., 2017. Evaluating the percentage of cloud cover in Iran using MODIS Terra sensor data (case study: year 2007). Nat. Geograph. Res. 49(4), 631-643 (in Persian).
Hejazizadeh, Z., Darand, M., Alijani, B., Nasserzadeh, M., Mirzaei, N., 2024. Investigation into variation in atmospheric circulation affecting the time delay of widespread and effective autumn’s precipitation. Climate Change Climatic Disasters 3(5), 27-64 (in Persian).
Intergovernmental Panel on Climate Change., 2001. IPCC: Climate Change 2001a: Impacts, Adaptation & Vulnerability, from https://www.ippc.ch.
Intergovernmental Panel on Climate Change., 2001. IPCC: Climate Change 2001b: The Scientific Basis, from https://www.ippc.ch.
Karbakhsh Ravari, M., 2019. Transient Period of Autumn and Spring Seasons in Fars Province Using Synoptic Maps. Msc. Thesis Shiraz University.
Kejna, M., Uscka-Kowalkowska, J., Kejna, P., 2021. The influence of cloudiness and atmospheric circulation on radiation balance and its components. Theoreti. Applied Climatol. 144, 823-838.
Koshiro, T., Kawai, H., Noda, A.T., 2022. Estimated cloud-top entrainment index explains positive low-cloud-cover feedback. Proceedings of the National Academy of Sciences. 119(29), e2200635119.
Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics. 50-60.
Masoudian, S.A., Kaviani, M.R., 2007. Climatology of Iran. Isfahan University Publications. First edition.
Mieslinger, T., Stevens, B., Kölling, T., Brath, M., Wirth, M., Buehler, S.A., 2022. Optically thin clouds in the trades. Atmosph. Chemistry Physics. 22(11), 6879-6898.
Moradi, H., 2004. Possible influences of North Atlantic Oscillation on winter reference climate of Iran. Global Planet. Change. 42(1-4), 1–10.
Mokhtari, R., Fakouriyan, S., Ghasempour, R., 2021. Investigating the effect of cloud cover on radiative cooling potential with artificial neural network modeling. Front. Energy Res. 8, 658338.
Nazemosadat, M.J., Shahgholian, K., Ghaedamini, H.A., 2023. The wet and dry spells within the MJO-phase 8 and the role of ENSO and IOD on the modulation of these spells: A regional to continental-scales analysis. Atmosph. Res. 285, 106631.
Park, J., Lee, T., Shin, H., 2024. Impact of Indian Ocean Dipole on climate variability in Southeast Asia. J. Climate Dynamics. 48(4), 1123-1140.
Pourasghar, F., Tozuka, T., Ghaemi, H., Oettli, P., Jahanbakhsh, S., Yamagata, T., 2014. Influences of the MJO on intraseasonal rainfall variability over southern Iran. Atmosph. Sci. Letters 16(2), 110-118.
Pourasghar, F., Oliver, E.C.J., Holbrook, N.J., 2019. Modulation of wet-season rainfall over Iran by the Madden–Julian Oscillation, Indian Ocean Dipole and El Niño–Southern Oscillation. Int. J. Climatol. 39(10), 4029-4040.
Rashedi, S., Sorooshian, A., Tajbar, S., Bobakran O.S., 2024. On the characteristics and long-term trend of total cloud cover in Iran. Acta. Geophys. 72, 4633-4648.
Rosenfeld, D., Lensky, I.M., 1998. Satellite-based insights into precipitation formation processes. Bullet. America. Meteorol. Soci. 79(11), 2457-2476.
Sepadeh, D., Salahi, B., Alijani, B., Zeynali, B., 2020. The status of the polar front in relation to the cold season over Iran. J. Geograph. Nat. Hazards. 13(49), 55-66 (in Persian).
Stephens, G.L., 2005. Cloud feedbacks in the climate system: A critical review. J. Climate. 18(2), 237-273.
World Meteorological Organization., 2008. WMO: International Cloud Atlas, Volume I, from https://public.wmo.int/en.
Yang, P., Baum, B.A., Hu, Y.X., Feng, Q., 2020. Global impact of cloud longwave scattering in an atmosphere. J. Geophy. Res.: Atmospheres 125(20), e2020JD033968.
Zarei, N., Behzadi, F., Vasheghani Farahani, E., Massah Bavani, A., 2024. Assessing the Influence of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on Precipitation in Iran Using Kendall and Pearson Correlations. Proceedings of the 8th International Electronic Conference on Water Sciences. 14-16 October 2024. MDPI.
Zhao, G., Di Girolamo, L., 2006. Cloud optical thickness variations with temperature. J. Geophy. Res.: Atmospheres 111(D19).
Zelinka, M.D., Klein, S.A., Qin, Y., Myers, T.A., 2022. Evaluating climate models’ cloud feedbacks against expert judgment. J. Geophy. Res.: Atmospheres 127(2), e2021JD035198.
Zhu, J., Poulsen, C. J., 2020. On the increase of climate sensitivity and cloud feedback with warming in the community atmosphere models. Geophysical Research Letters. 47, e2020GL089143.