با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری آبخیزداری، گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

3 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

4 فارغ التحصیل کارشناسی مرتع و آبخیزداری، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

5 کارشناس آبخیزداری اداره کل منابع طبیعی و آبخیزداری استان البرز، البرز، ایران

چکیده

مقدمه
فرسایش خندقی یکی از انواع فرسایش آبی است که سهم زیادی در تخریب اراضی دارد و به‌­عنوان یکی از مهمترین مخاطرات محیطی در جهان و به­‌خصوص در ایران شناخته شده است. در سال­‌های اخیر، فن‌های یادگیری ماشینی و سامانه اطلاعات جغرافیایی در زمینه تعیین مناطق حساس به فرسایش خندقی دارای کارایی بالایی بوده­اند و باعث افزایش دقت و سرعت در زمینه ارزیابی، پتانسیل فرسایش خندقی شده‌­اند که این فن‌ها در تعیین عوامل موثر بر فرسایش خندقی نیز موثر بوده‌­اند. اراضی لسی استان گلستان به­‌دلیل عمق کافی و دانه‌­بندی تقریبا یکنواخت سیلتی، استفاده مفرط، کشت در اراضی شیب­دار و مدیریت غلط اراضی، فرسایش‌­پذیری آبی بیشتری دارند، به طوری که همه انواع فرسایش را در این مناطق می­‌توان مشاهده کرد. متداول‌­ترین نوع فرسایش در این مناطق، فرسایش خندقی است. حوزه آبخیز مورد مطالعه در استان گلستان، با افزایش زمین­‌های دیم و رها شده، تغییر کاربری اراضی، حضور دام مازاد در جنگل‌­ها و همچنین، افزایش جمعیت روبه­‌رو است. لذا، این حوضه با افزایش حساسیت فرسایش خندقی مواجه است و باید مناطق دارای پتانسیل فرسایش خندقی شناسایی و مدیریت شوند.
 
مواد و روش‌ها
حوزه آبخیز مورد مطالعه با مساحت 222 هزار هکتار و دامنه ارتفاعی 58 تا 2168 متر، در شمال شرقی استان گلستان قرار دارد. میانگین بارندگی حوضه بین 224 تا 736 میلی­متر است. در این پژوهش، ابتدا موقعیت خندق­‌ها از اداره کل منابع طبیعی و آبخیزداری استان گلستان دریافت شد. سپس، از مجموع 1127 موقعیت خندق، به‌­صورت تصادفی 70 درصد به­‌عنوان داده‌­های آموزش و 30 درصد به­‌عنوان داده­‌های اعتبارسنجی طبقه‌­بندی شدند. به‌منظور تعیین متغیرهای موثر در حساسیت فرسایش خندقی، 14 عامل شناسایی شد و در مرحله بعد تست هم­خطی بین متغیرها با استفاده از نرم‌­افزار SPSS انجام شد. با استفاده از شاخص­‌های ضریب تحمل و عامل تورم واریانس در صورت وجود هم­خطی بین متغیرها از روند مدلسازی حذف شدند. با توجه به اهمیت نقشه مدل رقومی ارتفاع و کاربرد آن در تهیه عوامل مختلف پژوهش حاضر، مدل رقومی ارتفاع (با اندازه سلول 12.5 متر) با استفاده از تصاویر ماهواره ALOS تهیه شد. لایه­‌های شیب و جهت شیب با استفاده از مدل رقومی ارتفاع و به‌­ترتیب از توابع Slope و Aspect تهیه شده‌­اند. شاخص طول شیب در نرم‌­افزار SAGA GIS، لایه­‌های فاصله از آبراهه بر اساس نقشه آبراهه­‌ها (استخراج از نرم‌­افزار SAGA GIS) و فاصله از جاده بر اساس جاده‌­های موجود و با استفاده از تابع فاصله اقلیدسی در نرم‌­افزار ArcGIS تهیه شدند. لایه‌­های تراکم آبراهه و تراکم جاده، بر اساس نقشه آبراهه‌­ها و جاده­‌های موجود در منطقه و با استفاده از تابع Line Density در نرم‌­افزار ArcGIS به­دست آمدند. لایه سنگ­‌شناسی از نقشه زمین‌شناسی منطقه (مقیاس 1:100000) استخراج شده است و لایه کاربری اراضی از اداره کل منابع طبیعی و آبخیزداری استان گلستان دریافت شد. نقشه بارندگی با استفاده از اطلاعات 35 ایستگاه باران­‌سنجی تهیه شده است. ابتدا، میانگین بارندگی 26 ساله (دوره آماری مشترک) برای هر ایستگاه محاسبه شد و سپس، با استفاده از روش کریجینگ جهانی (به‌­دلیل کمترین میزان RMSE) در نرم‌­افزار ArcGIS پهنه­‌بندی بارندگی انجام گرفت. لایه شاخص موقعیت توپوگرافیک، با استفاده از مدل رقومی ارتفاع و با کمک نرم‌افزار SAGA GIS تهیه شد. به‌منظور ارزیابی مدل‌­ها، از منحنی تشخیص عملکرد نسبی (ROC) جهت قدرت پیش­بینی مدل­‌ها استفاده شد.
 
نتایج و بحث
نتایج نشان داد که بین متغیرها هم­خطی وجود ندارد و لذا، کلیه متغیرها در روند مدلسازی مورد استفاده قرار گرفتند. رابطه بین فرسایش خندقی و ارتفاع نشان داد که ارتفاعات پایین­تر حساسیت بیشتری نسبت به ارتفاعات بالاتر دارند و نزدیک به آبراهه­ها حساسیت فرسایش خندقی بیشتر است. نتایج نشان داد که با افزایش تراکم زهکشی، حساسیت فرسایش خندقی افزایش پیدا می­کند. همچنین، پادگانه­های قدیمی، شیل و لس­ها بیشترین تاثیر را بر حساسیت فرسایش خندقی دارند. نتایج نشان­دهنده کاهش حساسیت فرسایش خندقی با کاهش شاخص HAND است. در واقع این نتیجه بیانگر این است که در مناطقی که میزان سطوح اشباع در سطح حوزه آبخیز افزایش می­یابد، احتمال وقوع و حساسیت فرسایش خندقی افزایش پیدا می­کند. نتایج نشان داد که در میان انواع کاربری­ها، مسیل­ها، مراتع فقیر و کاربری کشاورزی، دارای بیشترین حساسیت فرسایش خندقی هستند. این در حالی است که مناطق جنگلی دارای کمترین میزان حساسیت به این فرسایش بوده­اند. نتایج نشان داد که در دامنه بارندگی 220 تا 420 میلی­متر، احتمال رخداد فرسایش خندقی افزایش پیدا کرده است و از دامنه 420 تا 500 میلی­متر، بالاترین میزان حساسیت را نشان داده است و با افزایش بارندگی از 500 میلی­متر، حساسیت فرسایش خندقی کاهش یافته است. از دلایل کاهش حساسیت فرسایش خندقی در بارندگی­های بالاتر می­توان به افزایش پوشش گیاهی و ایجاد شرایط مناسب برای زمین­لغزش­ها اشاره کرد. نتایج نشان داد که عمق دره تا 235 متر، باعث افزایش احتمال فرسایش خندقی شده است و از 235 متر به بالا، باعث کاهش احتمال رخداد فرسایش شده است. نتایج نشان داد که نزدیک به جاده­ها میزان حساسیت فرسایش خندقی افزایش پیدا می­کند و این مورد اثرات جاده­سازی و تشدید شرایط برای فرسایش خندقی را نشان می­دهد.
 
نتیجه‌گیری
این پژوهش با هدف تعیین عوامل موثر بر فرسایش خندقی و پهنه­بندی توزیع مکانی آن در شمال شرق استان گلستان انجام شد. در این پژوهش، با در نظر گرفتن 14 عامل مهم و با استفاده از مدل­های جنگل تصادفی، شبکه عصبی مصنوعی و درخت رگرسیون و طبقه­بندی، نقشه حساسیت وقوع فرسایش خندقی تهیه شد. با توجه به این­که شناسایی مناطق دارای حساسیت فرسایش خندقی مبتنی بر روش­های سنتی و نظرات کارشناسی از دقت قابل قبولی برخوردار نیست، استفاده از روش­های نوین یادگیری ماشینی امری ضروری است. نتایج نشان داد که عوامل فاصله از جاده و کاربری اراضی از مهمترین عوامل تاثیرگذار بر حساسیت فرسایش خندقی هستند که مدیریت کاربری اراضی را از سوی انسان می‌طلبد. منحنی ROC، نشان داد که دقت مدل­ها در برآورد مناطق دارای حساسیت فرسایش خندقی در مرحله آزمون عالی (ANN)، و در مرحله آزمون و اعتبارسنجی خیلی خوب (RF  و CART) بوده است که به معنای عملکرد عالی مدل­ها است.

کلیدواژه‌ها

عنوان مقاله [English]

Zoning gully erosion susceptibility using ANN, CART and RF models

نویسندگان [English]

  • Omid Asadi Nalivan 1
  • Alireza Rabet 2
  • Farzaneh Vakili tajareh 3
  • Marziyeh Ramezani 4
  • Mohamad Momeni 5
  • Kohzad Heydari 1

1 Ph.D Graduated, Department of Watershed management, faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Assistant Professor, Agricultural and Natural Resources Research Center of Zanjan Province, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran

3 Ph.D student in Watershed Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran

4 B.A Graduated in Rangeland and Watershed Management, Department of Rangeland and Watershed Management, Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran

5 Expert of Watershed management, General Department of Natural Resources and Watershed Management of Alborz Province, Alborz, Iran

چکیده [English]

Extended abstract
Introduction
Gully erosion is a water erosion that has a great contribution to land degradation and is known as one of the most important environmental hazards in the world and especially in Iran. In recent years, machine learning techniques and geographic information systems have been highly effective in determining areas sensitive to gully erosion and have increased accuracy and speed in the evaluation and potential of gully erosion and in determining effective factors on gully erosion has also been effective. The loess lands of Golestan Province are more susceptible to water erosion due to sufficient depth and almost uniform silty graining, excessive use, cultivation on sloping lands, and wrong land management so that all types of erosion can be observed in these areas. The most common type of erosion in these sediments is gully erosion. The studied watershed is faced with the increase of dry and abandoned land, land use change, the presence of surplus livestock in the forests, and also the population increase. Therefore, this area is facing an increase in sensitivity to gully erosion, and areas with the potential for gully erosion should be identified and managed.
 
Materials and methods
The studied watershed with an area of 222,000 ha and an elevation range of 58 to 2168 m is located in the northeast of Golestan Province. The average rainfall of the area is between 224 and 736 mm. In this research, first, the location of the gullies was obtained from the General Directorate of Natural Resources and Watershed Management of Golestan Province. Then, from the total of 1127 gullies position, 70% were randomly classified as training data and 30% as validation data. To determine the effective variables in gully erosion sensitivity, 14 factors were identified and in the next step, the collinearity test between the variables was performed using SPSS software. By using the indices of tolerance coefficient and variance inflation factor, if there is collinearity between the variables, they were removed from the modeling process. Considering the importance of the DEM map and its application in the preparation of various factors of the current research, a DEM was prepared using ALOS satellite images. The layers of slope and aspect are prepared by using a digital elevation model and slope and aspect functions respectively. Slope length index in SAGA GIS software, layers of distance from stream based on the map of stream, and distance from roads based on existing roads, and using the Euclidean distance function in the ArcGIS software was prepared. Stream density and road density layers were obtained based on the map of existing streams and roads in the region and using the line density function in ArcGIS. The lithology layer was extracted from the geological map of the region and the land use layer was obtained from the General Directorate of Natural Resources and Watershed Management of Golestan province. The rainfall map has been prepared using the information from 35 rain gauge stations. First, the average rainfall of 26 years was calculated for each station, and then rainfall zoning was done using the global Kriging Method (due to the lowest RMSE) in ArcGIS. The TPI layer was prepared using the DEM and using the SAGA GIS software. The HAND index is a topographic-hydrological index of the DEM of the nearest drain, representing the hydrological behavior of the watershed. To evaluate the models, the relative performance detection curve (ROC) was used for the predictive power of the models.
 
 
Results and discussion
The results showed that there is no co-linearity between the variables and therefore all the variables were used in the modeling process. The relationship between gully erosion and elevation showed that lower elevations are more sensitive than higher elevations and more susceptible to gully erosion near waterways. The results showed that with the increase in drainage density, the sensitivity of gully erosion increases, and the possibility of gully erosion increases. The results showed that the old barracks, shale, and loess have the greatest impact on the sensitivity of gully erosion. The results show a decrease in the sensitivity of gully erosion with a decrease in the HAND index. This result indicates that in the areas where the level of saturation in the watershed level increases, the possibility and sensitivity of gully erosion increases. The results showed that among the types of land use, canals, poor pastures, and agricultural land use have the highest sensitivity to gully erosion. This is even though the forest areas have the lowest sensitivity to this erosion. The results showed that in the rainfall range of 220 to 420 mm, the possibility of gully erosion has increased, and the range of 420 to 500 mm has shown the highest level of sensitivity, and with the increase of rainfall from 500 mm to above, a reduction in the sensitivity of gully erosion has been encountered. One of the reasons for reducing the sensitivity of gully erosion in higher rainfalls is the increase in vegetation and the creation of suitable conditions for landslides. The results showed that the depth of the valley up to 235 meters have increased the probability of gully erosion, and from 235 meters above, it has decreased the probability of erosion. The results showed that the sensitivity of gully erosion increases near roads, and this case shows the effects of road construction and the aggravation of conditions for gully erosion.
 
Conclusion
This research was conducted to determine the effective factors on gully erosion and zone its spatial distribution in the northeast of Golestan Province. In this study, by considering 14 important factors and using RF, ANN, and CART models, a sensitivity map of gully erosion was prepared. Because the identification of gully erosion-sensitive areas based on traditional methods and expert opinions do not have acceptable accuracy, it is necessary to use modern machine learning methods. The results showed that the factors of distance from the road and land use are the most important factors affecting the sensitivity of gully erosion, which requires land use management as human activities. The ROC curve showed that the accuracy of the models in estimating areas with gully erosion sensitivity was excellent in the test stage (ANN) and very good in the test and validation stage (RF and CART), which means the excellent performance of the models.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Golestan Province
  • Gully erosion
  • Machine learning
  • Relative performance detection curve
Arabameri, A., A. Cerda and J. Tiefenbacher. 2019a. Spatial pattern analysis and prediction of gully erosion using novel hybrid model of entropy-weight of evidence. Water, 11(6): 1129.
Arabameri, A., B. Pradhan and L. Lombardo. 2019b. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena, 183: 104223.
Arabameri, A., B. Pradhan and D. Tien Bui. 2020. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. Catena, 190: 104545.
Arabameri, A., K. Rezaei and M. Yamani. 2018. Analysis of geo-environmental parameters and gully erosion susceptibility mapping in Toroud Watershed using data-driven EBF method. Journal of  Range and Watershed Management, 71(1): 97-114 (in Persian) .
Arulbalaji, P., D. Padmalal and K. Sreelash. 2019. GIS and AHP techniques based delineation of groundwater potential zones, a case study from Southern Western Ghats, India. Scientific Reports, 9: 2082.
Azareh, A., O. Rahmati, E. Rafiei, J. Sankey, S. Lee, H. Shahabi and B. Ahmad. 2019. Modelling gully-erosion susceptibility in a semi-arid region, Iran: investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, 655: 684–696.
Conoscenti, C., V. Agnesi, M. Cama, N.A. Caraballo-Arias and E. Rotigliano. 2018. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degradation and Development, 29: 724–736.
Elith, J., S.J. Phillips, T. Hastie, M. Dudík, Y.E. Chee and C.J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distribution, 17(1): 43–57.
Flanagan, D.C. and M.A. Nearing. 1995. USDA-water erosion prediction project: hill slope profile and watershed model documentation. NSERL Report 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana, 40 pages.
Gornami, R. and S. Shadfar. 2019. Application of the GIS in the determination of susceptible areas to gully erosion using the ANP. Watershed Management Research, 31(4): 58-68 (in Persian).
Karimi, E. and M. Ownegh. 2016. Evaluation of gully erosion hazard by statistical models in Naghan Inter Basin, Chaharmahal Va Bakhtiari Province. Journal of Water and Soil Conservation, 22(5): 315-319 (in Persian).
Kariminejad, N., M. Hosseinalizadeh, H. Pourghasemi, A. Bernatek, G. Campetella and M. Ownegh. 2019. Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. Science of the Total Environment, 677: 281–298.
Knisel, W.G. 1980. CREAMS: a field scale model for chemicals, runoff and erosion from agricultural management systems. US Department of Agriculture, Conservation research report (USA), 26: 474–485.
Kornejady, A., M. Ownegh and A. Bahremand. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152: 144-162.
Meliho, M., A. Khattabi and N. Mhammdi. 2018. A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika Watershed, Morocco. Environment Earth Science, 77(18): 655.
Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190: 231–259.
Poesen,‌ J., G. Nachtergaele, ‌C. Verstraten and C. Valentine. 2003. Gully erosion and environmental‌ change: importance and research needs. Catena, 50(2–4): 91–133.
Rahmati, O., A. Haghizadeh, H.R. Pourghasemi and F. Noormohammadi. 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82: 1231-1258.
Rahmati, O., A. Kornejady, M. Samadi, A.D. Nobre and A.M. Melesse. 2018. Development of an automated GIS tool for reproducing the HAND terrain model. Environmental Modelling and Software, 102: 1-12.
Rahmati, O., N. Tahmasebipour, A. Haghizadeh, H.R. Pourghasemi and B. Feizizadeh. 2017a. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: an integrated framework. Science of the Total Environment, 579: 913–927.
Rahmati, O., N. Tahmasebipour, A. Haghizadeh, H.R. Pourghasemi and B. Feizizadeh. 2017b. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298: 118-137.
Saber Chenari, K., A. Bahremand, V. Sheikh and B. Komaki. 2016. Gully erosion hazard zoning using of Dempster-Shafer Theory in the Gharnaveh Watershed, Golestan Province. Eco-Hydrology Journal, 3(2): 219-231 (in Persian).
Samani, A.N., R.J. Wasson, M.R. Rahdari and A. Moeini. 2016. Quantifying eroding head cut detachment through flume experiments and hydraulic thresholds analysis. Environmental Earth Sciences, 75(21): 1424-1443.
Sanaei, S., A. Pashayi, S. Ayubi and M. Ekhtesasi. 2005. Sedimentological survey of loess areas of Qopan and Naharkhoran valley from morphometric perspective. Proceedings of Third Erosion and Sediment National Conference. Soil Conservation and Watershed Management Institute, Tehran, Iran (in Persian).
Shadfar, S. 2010. An introduction to gully erosion. Entekhab Publications, 141 pages (in Persian).
Shadfar, S. 2016. Identifying the gully erosion potential by using Artificial Neural ‎Network (ANN), case study: Troud Watershed. Watershed Engineering and Management, 8(3): 256-263 (in Persian).
Tien Bui, D., A. Shirzadi, H. Shahabi, K. Chapi, E. Omidvar, B. Thai Pham, D. Talebpour, H. Khaledian, B. Pradhan, M. Panahi, B. Ahmad, H. Rahmani, G. Grof and S. Lee. 2019. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors, 19: 2444.
Valentin, C., J. Poesen and L. Yong. 2005. Gully erosion: impacts, factors and control. Catena, 63: 132–153.
Viero, A.C., C. Dos, M.R. Nilza, J.A. Goldenfum, A. Joel and A. Risso. 2005. Natural and anthropogenic factors controlling gully erosion in the basaltic upland of southern Brazil. International Journal of Sediment Research, 20(3): 211-223.
Wang, L., S. Wei, R. Horton and M.A. Shao. 2011. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. Catena, 87: 90–100.
Yamani, S., M. Zamanzadeh and M. Ahmadi. 2013. Analysis of factors affecting the formation and development of gully erosion: a case study of Kahoor Plain in Fars Province. Geographical Exploration Desert, 1: 53-84 (in Persian).
Zheng, F. 2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere, 16(4): 420–42.