با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

2 دانشیار پژوهشی، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشگاه آزاد اسلامی، واحد لارستان، فارس، ایران

چکیده

مقدمه
دشت سگزی در 40 کیلومتری شهر اصفهان با وسعت حدود 40 هزار هکتار، عامل تهدیدی جدی برای این شهر تاریخی محسوب می­‌شود. این دشت که تا چند دهه پیش نیزار و مرغزاری نسبتا آباد بوده، اکنون به خطری عظیم به لحاظ تخریب طبیعت و آلودگی محیط زیست تبدیل شده است. دو عامل طبیعی و انسانی در بیابان‌زایی این منطقه نقش دارند. از عوامل طبیعی، بارندگی کم، تبخیر زیاد، وجود لایه‌های محدود کننده در خاک و بادهای شدید و از عوامل انسانی، چرای بیش از حد دام، بوته­‌کنی، رشد شدید جمعیت و بهره‌­برداری بی‌رویه از منابع موجود، افت آب­‌های زیرزمینی و مهم­تر از همه، بهره­‌برداری از معادن سطحی موجود به‌ویژه معادن گچ را می‌­توان نام برد. هدف اصلی این پژوهش، ارزیابی کارایی الگوریتم SEBAL برای تخمین تبخیر و تعرق واقعی دشت سگزی با توجه به موقعیت خشک و نیمه‌خشک بودن منطقه با استفاده از تصاویر لندست 8 بود.
 
مواد و روش‌­ها
در این پژوهش، استخراج اطلاعات مورد نیاز از این تصاویر طی سه مرحله اصلی یعنی پیش­‌پردازش، پردازش و پس‌پردازش صورت گرفت. در مرحله پیش‌پردازش، پس از انجام تصحیحات اتمسفریک، هندسی و سایر تصحیحات لازم، اقدام به زمین‌مرجع ­کردن تصاویر شد. در محله پردازش داده‌­ها، روش‌های مختلف بارزسازی و تحلیل‌های آماری و سنجش از دوری به­‌منظور دستیابی به لایه‌های اطلاعاتی صورت گرفت. به­‌منظور ارزیابی نتایج در مرحله پردازش تصاویر، پس‌­پردازش داده‌­ها بر اساس تحلیل­‌های مختلف ارزیابی لایه­‌های قابل اعتماد از لحاظ صحت و دقت، انجام گرفت. در مرحله بعد، الگوریتم SEBAL اجرا شد که در این مرحله، ابتدا میزان تابش خالص (Rn) با توجه به دمای سطح زمین و پوشش گیاهی و میزان انرژی‌های رسیده به زمین محاسبه شد. سپس، شار گرمایی خاک (G) به‌­دست آمد تا میزان قابلیت انتقال گرما به داخل خاک مشخص شود. سپس، میزان شار گرمای محسوس (H) که تعیین‌کننده هدررفت انرژی از خاک به سمت فضا است، تعیین شد. در نهایت، پس از تعیین مقدار شار گرمای محسوس، تبخیر و تعرق محاسبه شد. الگوریتم SEBAL، معادله بیلان انرژی را به‌منظور محاسبه تبخیر و تعرق واقعی گیاه محاسبه می‌کند.
 
نتایج و بحث
پارامترهای آلبیدوی سطحی (بیشترین و کمترین مقادیر وزنی 0.85 و 0.16)، دمای سطح خاک (بیشترین و کمترین مقادیر وزنی 326 و 299 درجه کلوین)، شاخص پوشش گیاهی NDVI (بیشترین وکمترین مقادیر به‌ترتیب مربوط به نواحی با پوشش گیاهی خوب با 1+ و پیکره‌­های آبی با 1-)، میزان انرژی خالص رسیده به سطح زمین (بیشترین و کمترین مقادیر وزنی حدود 703 و 210 وات بر متر مربع)، شار گرمایی خاک (بیشترین و کمترین مقادیر وزنی حدود 130 و 35 وات بر متر مربع)، شار گرمای محسوس (بیشترین و کمترین مقادیر وزنی حدود 323 و 23 وات بر متر مربع)، تبخیر و تعرق لحظه‌­ای (بیشترین و کمترین مقادیر وزنی حدود 0.842 و 0.225 میلی‌متر) و تبخیر و تعرق روزانه (بیشترین و کمترین مقادیر وزنی حدود 20.2 و 5.4 میلی‌متر) از جمله مهم‌ترین پارامترهای موثر در الگوریتم SEBAL بود که در این پژوهش مورد بررسی قرار گرفتند. یافته‌­های پژوهش در رابطه با نتیجه کاربرد الگوریتم SEBAL با داده‌­های ماهواره­ای لندست 8 نشان داد که الگوریتم SEBAL تبخیر و تعرق را در محدوده‌هایی که دارای پوشش گیاهی غالبا کشاورزی و باغ هستند، به‌‌خوبی پیش‌بینی کرده است، به‌طوری ‌که میزان هدررفت آب از طریق بخار را نزدیک به مقادیر ثبت شده ایستگاه سینوپتیک شرق اصفهان (فرودگاه شهید بهشتی) پیش‌بینی کرده است. میزان خطای به‌دست ‌آمده در محاسبه الگوریتم  مورد نظر 0.1 درصد بوده است. میزان تبخیر و تعرق لحظه‌ای واقعی در محدوده بین 0.22 تا 0.84میلی‌متر محاسبه شده است که با توجه به شرایط آب ‌و هوایی منطقه و دمای هوای نزدیک به سطح (27 تا 50 درجه کلوین) و مقدار تبخیر و تعرق ثبت شده به روش پنمن-مانتیث (0.3 میلی‌متر در ایستگاه سینوپتیک شرق اصفهان)، این مقدار در محدوده معقولی قرار دارد.
 
نتیجه­‌گیری
مقایسه خروجی‌های الگوریتم SEBAL با مقدار تبخیر و تعرق به‌دست ‌آمده در ایستگاه سینوپتیک شرق اصفهان که RMSE مقدار 0.1 را نشان می‌دهد، بیانگر مناسب بودن این الگوریتم در محاسبه تبخیر و تعرق در منطقه سگزی است. با توجه به نیاز روزافزون کشور برای جلوگیری از هدررفت یا مصرف مازاد آب در بخش کشاورزی، چه از طریق تغییر الگوی کشت و چه تغییر در روش‌های آبیاری، به‌کارگیری الگوریتم SEBAL در این پژوهش، می‌تواند اطلاعات ارزشمندی را در اختیار متخصصین و مدیران بخش آب و کشاورزی قرار دهد. نتایج به‌دست ‌آمده از اجرای این پژوهش، نشان داد که سنجش از دور با در دست ‌داشتن الگوریتم‌های متفاوت از جمله الگوریتم SEBAL و کمینه اطلاعات زمینی، دارای پتانسیل مناسبی برای تخمین تبخیر و تعرق واقعی است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of actual daily evapotranspiration with SEBAL algorithm, case study: Segzi Plain, Isfahan

نویسندگان [English]

  • Ahmad Mokhtari 1
  • kourosh shirani 2
  • Navid Moslemzadeh 3

1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran

2 Associate Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization (AREEO), Iran

3 MSc of Remote Sensing and Geographic Information System, Islamic Azad University, Lar Branch, Fars, Iran

چکیده [English]

Extended abstract
Introduction
Segzai plain, 40 kilometers from Isfahan city, with an area of about 40,000 ha, is considered a serious threat to this historical city. This plain, which until a few decades ago was a relatively prosperous reed and meadow, has now become a huge danger in terms of nature destruction and environmental pollution. Two natural and human factors play a role in the desertification of this region. Among the natural factors are low rainfall, high evaporation, the presence of limiting layers in the soil and strong winds and from human factors, excessive grazing and overgrazing of livestock as well as bush-cutting, rapid population growth and excessive exploitation of existing resources decline Underground water and most importantly, exploitation of surface mines, especially gypsum mines, can be mentioned. The main goal of this research was to evaluate the effectiveness of the SEBAL model for estimating the actual evaporation and transpiration of the Segazi Plain, considering the arid and semi-arid location of the region using the landsat 8 image.
 
Materials and methods
To do this research, first, landsat 8 images were processed. Extraction of required information from satellite images in this research was done during three main stages, i.e. pre-processing, processing and post-processing. In other words, in the pre-processing stage, after performing atmospheric, geometric and other necessary corrections, the image was referred to the ground. In the area of data processing, different highlighting methods and statistical analyzes and remote sensing were done in order to achieve the information layers of the plan. In order to evaluate the results in the image processing stage, the post-processing of the data based on various analyzes was used to evaluate the reliable layers in terms of accuracy and precision. After that, the SEBAL algorithm was implemented.  first the amount of net radiation (Rn) was calculated according to the temperature of the earth's surface and vegetation and the amount of energy reaching the earth, then the heat flux of the soil (G) was obtained to determine the amount of transfer capability The heat into the soil was determined, then it was determined to calculate the amount of sensible heat flux (H), which determines the loss of energy from the soil to space. Finally, after determining the sensible heat flux, evaporation and transpiration were calculated. The SEBAL algorithm calculates the energy balance equation in order to calculate the actual evaporation and transpiration of the plant.
 
Results and discussion
Surface albedo parameters (the highest and lowest weighted values are around 0.85 and 0.16), soil surface temperature (the highest and lowest weighted values are around 326 and 299 degrees Kelvin), NDVI vegetation index (the highest and lowest weight values related to areas with good vegetation close to +1 and related to water and water bodies close to -1), the amount of net energy reaching the surface of the earth (the highest and lowest weight values are about 703 and 210 Wm-2, soil heat flux (the highest and lowest weight values are about 130 and 35 Wm-2), sensible heat flux (the highest and lowest weight values are about 323 and 23 Wm-2 , momentary evaporation and transpiration (the highest and lowest weight values are about 0.842 and 0.225 mm) and daily transpiration evaporation (the highest and lowest weight values are about 20.2 and 5.4 mm) are among the most important effective parameters in this Sabal algorithm which were investigated in this research. Changes in actual transpiration evaporation (the highest weight values about 0.85 mm and the lowest weight values about 0.16 mm). The obtained results showed that the SEBAL model has well predicted evaporation and transpiration in areas that have vegetation, mostly agriculture and gardens, so that the amount of water loss through evaporation has been predicted close to the values found in the eastern synoptic station of Isfahan (airport Shahid Beheshti) is registered.
 
Conclusion
The amount of error obtained in SEBAL calculation was 0.1%. The amount of real momentary evaporation and transpiration has been calculated in the range between 0.22 and 0.84 mm, according to the weather conditions of the region and the temperature of the air near the surface (27 to 50 degrees) and the amount of evaporation and transpiration recorded by the Penman-Monteith equation (30.0 mm in the east of Isfahan synoptic station), this value is in a reasonable range. Comparing the outputs of Sabal model with the amount of evaporation and transpiration obtained in the same station, which shows the root mean square error (RMSE) value of 0.1, indicates the suitability of this algorithm in calculating evaporation and transpiration in Segazi region. Considering the growing need of the country to prevent the wastage or excess consumption of water in the agricultural sector, either through changing the cultivation pattern or changing the irrigation methods, the application of the developed tool of the Sabal algorithm in this research can provide valuable information to the experts and managers of the water sector put agriculture. The results obtained from this implementation of this research showed that remote sensing has a good potential for estimating actual evapotranspiration (ETA) by having different algorithms such as SEBAL algorithm and minimum ground information.

کلیدواژه‌ها [English]

  • Cold pixel
  • Hot pixel
  • NDVI vegetation index
  • Surface albedo
  • Surface energy balance equation
Abdoli, H. 2010. Estimation of evapotranspiration using Surface Energy Balance Algorithm for Ground (SEBAL) and satellite image. MSc Thesis, Isfahan University of Technology, 90 pages (in Persian).
Abolhasani, K. and H. Zareei. 2016. Spatial interpolation and reference evapotranspiration using geostatistical methods and geographic information system. Journal of Water Science Engineering, 6(13): 7-21 (in Persian).
Allen, R., A. Morse, M. Tasumi, W.G.M. Bastiaanssen, W.J. Kramber and H. Anderson. 2001. Evapotranspiration from landsat (SEBAL) for water rights management and compliance with multi-state water compacts (Vol. 2). Proceedings of International Geoscience and Remote Sensing Symposium, Australia.
Almhab, A. and I. Busu. 2008. Estimation of evapotranspiration with modified SEBAL model using landsat-TM and NOAA-AVHRR images in arid mountains area. Proceedings of the Second Asia International Conference on Modelling and Simulation, Kuala Lampur, Malaysia.
Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1): 87-100.
Bastiaanssen, W.G.M., E.J.M. Noordman, H. Pelgrum, G. Davids, B.P. Thoreson and R.G. Allen. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1): 85-93.
Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes and A.A.M. Holtslag. 1998. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL), 1. Formulation. Journal of Hydrology, 212-213: 198-212.
Bdoli, H. 2010. Estimation of evapotranspiration using Surface Energy Balance Algorithm for Ground (SEBAL) and satellite image. MSc Thesis, Isfahan University of Technology, 384 pages (in Persian).
Blonquist, J.M., R.G. Allen and B. Bugbee. 2010. An evaluation of the net radiation sub-model in the ASCE standardized reference evapotranspiration equation: implications for evapotranspiration prediction. Agricultural Water Management, 97(7): 1026-1038.
Bolhasani, K. and H. Zareei. 2016. Spatial interpolation and reference evapotranspiration using geostatistical methods and geographic information system. Journal of Water Science Engineering, 6(13): 7-21 (in Persian).
Gao, Z., E.S. Russell, J.E. Missik, M. Huang, X. Chen, C.E. Strickland, R. Clayton, E. Arntzen, Y. Ma and H. Liu. 2017. A novel approach to evaluate soil heat flux calculation: an analytical review of nine methods. Journal of Geophysical Research: Atmospheres, 122(13): 6934-6949.
Ghamarnia, H. and Z. Niazi. 2018. Evaluation and comparison of different methods of reference evapotranspiration based on mass transmission methods in Iran and its zoning by using GIS. Iran-Water Resources Research, 14(3): 318-338 (in Persian).
Isfahan Meteorological Organization. 2021. Isfahan weather foreost organisation. Available online at:  http://esfahanmet.ir/ShowPage.aspx?page_=form&order=show&lang=1&sub=0&PageId=5884&codeV=1&tempname=newskins
Jaber, H., S.B. Mansor, B. Pradhan and A. Noordin. 2016. Evaluation of SEBAL model for evapotranspiration mapping in Iraq using remote sensing and GIS. International Journal of Applied Engineering Research, 11(6): 3950-3955.
Jafari, H., P. Afrasiab, M. Delbari and M. Taheri. 2017. Determination of evapotranspiration and crop coefficient of olive in different growth stages using remote sensing techniques and moisture balance in Tarom Zanjan. Irrigation and Water Engineering, 7(27): 120-134 (in Persian).
Jassas, H., W. Kanoua and B. Merkel. 2015. Actual evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) using the Surface Energy Balance Algorithm for Land (SEBAL) and water balance. Geosciences, 5(2): 141-159.
Laipelt, L., A.L. Ruhoff, A.S. Fleischmann, R.H. Kayser, E.D. Kich, H.R. da Rocha and C.M. Neale. 2020. Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest–savanna transition in Brazil. Remote Sensing, 12(7): 1108.
McShane, R.R., K.P. Driscoll and R. Sando. 2017. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents (2017-5087). Scientific Investigations Report, 30 pages.
Miryaghoubzadeh, M., K. Solaimani, M. Habibnejad Roshan, K. Shahedi, K. Abbaspour and S. Akhavan. 2014. Estimation and assessment of actual evapotranspiration using remote sensing data, case study: Tamar Basin, Golestan Province, Iran. Irrigation and Water Engineering, 4(15): 89-102 (in Persian).
Mokhtari, A. and K. Shirani. 2020. Evaluation of actual daily evapotranspiration with SEBAL algorithm, case study: Segzi Plain, Isfahan. Proceedings of the Third National Conference on Development of Water Science Technology, Watershed Management and River Engineering, Tehran, Iran.
Niazi, Z. 2018. Evaluation and comparison of different methods of reference evapotranspiration based on mass transmission methods in Iran and its zoning by using GIS. Iran-Water Resources Research, 14(3): 263-267.
Nouri, H. and M. Faramarzi. 2017. Investigating actual evapotranspiration in different land uses in mountainous areas using SEBAL algorithm and a combination of MODIS and Landsat 8 satellite images. Geography and Environmental Planning, 28(2): 39-56 (in Persian).
Pahlevanzadeh, N., M. Janalipou, N. Aabbaszadeh Teharni and F. Farhanj. 2019. Accuracy improvement of land surface temperature extracted from thermal bands of landsat satellite using linear regression and ground observations. Geography and Environmental Planning, 30(3): 59-78.
Poormohammadi, S., M.T. Dastorani, S.A.M. Cheraghi, M.H. Mokhtari and M.H. Rahimian. 2011. Evaluation and estimation of water balance components in arid zone catchments using RS and GIS, case study: Manshad Catchment, Yazd Province. Water and Wastewater, 22(3): 99-108 (in Persian).
Sanaei Nejad, S.H., S. Noori and S.M. Hasheminia. 2011. Estimation of evapotranspiration using satellite image data in Mashhad area. Journal of Water and Soil (Agricultural Sciences and Technology), 25(3): 540-547 (in Persian).
Sauer, T.J., and R. Horton. 2005. Soil heat flux. Micrometeorology in Agricultural Systems, Publications from USDA-ARS/UNL Faculty, 154 pages.
Shawash, S. 2015. Actual crop evapotranspiration estimation using SEBAL model. A Manual for Regional Coordination on Improved Water Resources Management and Capacity Building, Ministry of Water and Irrigation, Amman, Jordan.
Simaie, E., M. Homaee and A. Norouzi. 2013. Evaluating SEBAL model to estimate evapotranspiration using MODIS and TM sensors data. Journal of Water and Soil Resources Conservation, 2(4): 29-40 (in Persian).
Teixeiraa, A.H.de C., W.G.M. Bastiaanssen, M.D. Ahmad and M.G. Bos. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River Basin, Brazil, Part B: application to the regional scale. Agricultural and Forest Meteorology, 149(3): 477-490.
Vali, A., A. Ranjbar, M. Mokarram and F. Taripanah. 2019. An investigation of the relationship between land surface temperatures, geographical and environmental characteristics and biophysical indices from landsat images. Journal of RS and GIS for Natural Resources, 10(3): 35-58 (in Persian).
Zamansani, E., A. khoorani, A. Sadeghi-E-Lari and J. Sadidi. 2017. Evaluation of evapotranspiration of wheat using SEBAL algorithm, case study: agricultural research station of Haji Abad. Physical Geography Research Quarterly, 49(4): 667-681 (in Persian).
Ziaee, R., M. Moghaddasi, S. Paimozd and M. Bagher. 2019. Comparison of SEBS and SEBAL algorithms in evaporation estimation from open water surface with the assessment of the salinity effect. Journal of Water and Soil Science, 22: 317-329 (in Persian).
Zolfaghari, H., J. Sahraei, J. Masoompoor Samakoosh and F. Borzoi. 2016. Study of sensible heat flux and its relationship with temperature changes and wind during warm periods of year in Iran. Physical Geography Research Quarterly, 48(3): 431-450 (in Persian).