با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران

2 استاد، دانشکده منابع طبیعی، دانشگاه تهران

3 دانشیار، دانشکده منابع طبیعی، دانشگاه تهران

4 استادیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

چکیده

بارش یکی از مهمترین ورودی‌­ها در مدل­‌سازی رواناب است. وجود داده‌­های بارش با دقت زمانی و مکانی مناسب، برای حوزه­‌های آبخیز با ایستگاه‌های باران­سنجی اندک و پراکنده، بسیار مهم و ضروری است. در حال حاضر ماهواره­‌های اقلیمی از منابع مهم در برآورد بارش هستند. در این پژوهش، ابتدا کارایی داده­‌های بارش ماهواره TRMM در سری زمانی ماهانه حوزه آبخیز چهل‌چای با استفاده از شاخص­‌های آماری R2، RMSE، NSE و Bias از طریق مقایسه با داده‌های بارش ایستگاه‌های باران‌­سنجی (مشاهده شده) مورد ارزیابی قرار گرفت که مقدار این شاخص‌های آماری به‌ترتیب 0.54، 22.70، 0.44 و 14.86- به‌­دست آمد. با توجه به مقدار ضریب تبیین (R2)، می‌توان نتیجه گرفت که ماهواره TRMM توانسته 0.54 بارش مشاهده شده را برآورد کند. در گام بعدی به‌­منظور برآورد رواناب ماهانه از سه مدل­ داده مبنا شامل MLP، ANFIS و SVR استفاده شد. دو نوع ترکیب ورودی به مدل‌های داده مبنا شامل: 1) داده‌های بارش مشاهده شده در گام‌­های زمانی t و 1-t و رواناب در گام زمانی 1-t و 2) داده‌­های بارش ماهواره­ای در گام‌های زمانی t و 1-t و رواناب در گام زمانی 1-t انتخاب شد. برای مقایسه میزان دقت و خطای مدل‌ها از R2 و RMSE مرحله صحت‌سنجی استفاده شد که مدل ANFIS با مقدار R2 و RMSE به‌ترتیب برای ترکیب ورودی نوع اول 0.80 و 0.97 و همچنین، برای ترکیب ورودی نوع دوم  0.78 و 1.02 به‌­عنوان مدل منفرد مناسب در منطقه مورد مطالعه برای برآورد رواناب انتخاب شد. از روش میانگین­‌گیری وزنی در رویکرد ترکیب داده­‌ها به­‌منظور مدل­‌سازی و ارائه یک مدل­ ترکیبی داده­­ مبنا استفاده شد که این مدل ترکیبی داده مبنا باعث بهبود مقادیر0.81= R2 و 4.85- =Bias برای ترکیب ورودی نوع اول و همچنین، بهبود مقدار 0.79=R2 برای ترکیب ورودی نوع دوم شد و این روش ضعف مدل‌های منفرد را پوشش داده است.

کلیدواژه‌ها

عنوان مقاله [English]

Runoff modeling using TRMM satellite precipitation data in Chehel Chai Watershed

نویسندگان [English]

  • Hossein Emami 1
  • Ali Salajegh 2
  • Alireza Moghaddamnia 3
  • Shahram Khalighi 3
  • Abolhassan Fathbabadi 4

1 MSc Watershed Management Science and Engineering, Faculty of Natural Resource, University of Tehran, Iran

2 Professor, Faculty of Natural Resource, University of Tehran, Iran

3 Associate Professor, Faculty of Natural Resource, University of Tehran, Iran

4 Assistant Professor, Faculty of Natural Resources and Agriculture, Gonbad Kavous University, Iran

چکیده [English]

Precipitation is of the most important inputs of runoff modeling. The availability of precipitation data with appropriate temporal and spatial accuracy is very important and necessary for watersheds with small and scattered rainfall stations. Nowadays, climatic satellites are practical and widely-used tools in precipitation estimations. In this study, first the efficiency of TRMM satellite precipitation data in the monthly time series of Chehelchai Watershed was evaluated using R2, RMSE, NSE and Bias statistical indices by comparing the precipitation data of rain gauge stations (observed)  and the values of these statistical indices were 0.54, 22.70, 0.44 and -14.86, respectively. Considering the value of the coefficient of determination (R2), it can be concluded that the TRMM satellite was able to estimate the 0.54 of observed precipitation. In the next step, three base data models including MLP, ANFIS and SVR were used to estimate the monthly runoff. Two different input scenarios were selected :1) observed precipitation data in t and t-1 time steps and runoff in t-1 time step and 2) satellite precipitation data in t and t-1 time steps and runoff in t-1 time step. To compare the accuracy and error of the models, R2 and RMSE of the validation stage were used. The ANFIS model with the values of R2 and RMSE were 0.80 and 0.97 for the first type input combination and 0.78 and 1.02 for the second type input combination, respectively, as the suitable single model for estimating runoff in the study area were selected. Then weighted-mean method was used in the data fusion approach to provide a data driven combination model for each combination of inputs into the model in the studied watershed. This data fusion approach data-driven model improved the values (R2=0.81) and (Bias=-4.85) for the first type input combination and also improved the value (R2=0.79) for the second type input combination.

کلیدواژه‌ها [English]

  • Data-driven models
  • Data fusion approach
  • Statistical indices
  • TRMM
  • Weighted-mean method
  1. Adjei, K.A., L. Ren, E.K. Appiah-Adjei, K. Yeboah and A.A. Agyapong. 2012. Validation of TRMM data in the Black Volta Basin of Ghana. Journal of Hydrologic Engineering ASCE, 17(5): 647-654.
  2. Akbari, M. 2013. Efficiency and accuracy in the estimation of daily, monthly and quarterly rainfall data from TRMM-3B42 in Khorasan Razav. MSc Thesis, Ferdowsi University Mashhad, 106 pages.
  3. Akbarnia, M. 2012. Long-term river forecasting using baseline data models, case study: Karkheh River. MSc Thesis, University of Tehran, 146 pages.
  4. Azmi, M., S. Araghinejad and M. Kholghi. 2010. Multi model data fusion for hydrological forecasting using K- nearest neighbor method. Iranian Journal of Science and Technology Transaction Engineering, 34(B1): 81-92.
  5. Bazaz, R. 2015. Flood forecasting and now casting model using combined remote satellite information and ground stations. MSc Thesis, University of Tehran, 109 pages.
  6. Breiman, L. 1996. Stacked regressions. Machine Learning, 24: 49-64.
  7. Guofeng, Z., Q. Dahe, L. Yuanfeng, Ch. Fenli, H. Pengfei, Ch. Dongdong and W. Kai. 2016. Accuracy of TRMM precipitation data in the southwest monsoon region of China. Theoretical and Applied Climatology, 129(1): 353-362.
  8. He, Z., X. Wen, H. Liu and J. Du. 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509: 379-386.
  9. Jang, J.S.R. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. Journal of Transactions on Systems, Man and Cybernetics, 23(3): 665-685.
  10. Khosravi, M. 2015. Predicting runoff in non-statistical watersheds using a combined data base model approach. PhD Thesis, University of Tehran, 190 pages.
  11. Li, D., G. Christakos, X. Ding and J. Wu. 2017. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi Catchment (Taihu Lake Basin, China). Journal of Hydrology, 556: 1139-1152.
  12. Li, X., H.Q. Zhang and Ch.Y. Xu. 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang Catchment, Poyang Lake Basin. Journal of Hydrology, 426-427: 28-38.
  13. Madadi, Gh., S. Hamzeh and A.A. Noroozi. 2015. Evaluation of rainfall on a daily, monthly and annual basis using satellite imagery, case study: west boundary basin of Iran. Journal of RS and GIS for Natural Resources, 6(2): 59-74 (in Persian).
  14. Mantas, V.M., Z. Liu, C. Caro and A.J.S.C. Pereira. 2014. Validation of TRMM multi satellite precipitation analysis (TMPA) products in the Peruvian Andes. Journal of Atmospheric Research, 163: 132-145.
  15. Meng, J., L. Li, Z. Hao, J. Wang and Q. Shao. 2014. Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. Journal of Hydrology, 509: 320-332.
  16. Menhaj, M.B. 2005. Fundamentals of computational intelligence neural networks. Amir Kabir University Press, 256 pages.
  17. Mohamadpour, M.A. 2015. Evaluation of TRMM (3B43-V7) satellite data based on selected stations for Iran. MSc Thesis, Ferdowsi University Mashhad, 98 pages.
  18. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3): 282-290.
  19. Rezapour Tabari, M. 2016. Prediction of river runoff using fuzzy theory and direct search optimization algorithm coupled model. Journal for Science and Engineering, 41(10): 4039-4051.
  20. Scheel, M.L.M., M. Rohrer, Ch. Huggel, D. Villar, E. Silvester and G. Huffman. 2011. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Journal of Hydrology and Earth System Sciences, 15: 2649-2663.
  21. See, L. and R.J. Abrahart. 2001. Multi-model data fusion for hydrological forecasting. Journal of Computers and Geosciences, 27(8): 987-994.
  22. Shirvani, A. and E. Fakharizade Shirazi. 2014. Comparison of ground-based observation of precipitation with TRMM satellite estimations in Fars Province. Journal of Agricultural Meteorology, 2(2): 1-15 (in Persian).
  23. Sivakumar, B., A.W. Jayawardena and T.M.K.G. Fernando. 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265(1-4): 225-245.
  24. Vapnik, V.N. 1995. The nature of statistical learning theory. Springer, New York press, 265 pages.
  25. Yang, Y. and Y. Luo. 2014. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN and TMPA in the arid region of northwest China. Journal of Theoretical and Applied Climatology, 188(3): 429-445.