نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری مهندسی کشاورزی منابع آب، دانشکده کشاورزی، دانشگاه بیرجند
2 دانشیار، دانشکده کشاورزی، دانشگاه بیرجند
چکیده
امروزه استفاده از مدلهای هیدرولوژی، عمدتاً برای شبیهسازی تغییرات منبع آب و سیلان (رواناب و تبخیر) ضروری به نظر میرسد. مدلسازی مناسب فرایندهای هیدرولوژیکی نیازمند تعیین پارامترهای مدل است. در فرایندهای واسنجی مقادیر پارامترهای مدل طوری برآورد میشوند که مدل بهخوبی بتواند سامانه طبیعی را شبیهسازی کند. تخمین پارامترهای این گونه مدلها عموماً بهصورت مستقیم بهدلیل تعداد بالای پارامترها غیرممکن است و لازم است، به کمک ابزارهای بهینهسازی (واسنجی مدل) آنها را برآورد کرد. در پژوهش حاضر، واسنجی پارامترهای مدل بارش–رواناب روزانه Hymod (یک مدل ساده مفهومی بارش–رواناب) با استفاده از الگوریتم نهنگ (WOA) که از نحوه جستجوی غذای نهنگ سرچشمه گرفته است، انجام شد. ارزیابی روش واسنجی مذکور با استفاده از دادههای روزانه بارش و تبخیر و تعرق برای پنج سال و صحتسنجی آن نیز در پنج سال، در حوضه رودخانه لیف آمریکا انجام شد. مقادیر دبی شبیهسازی شده و مشاهده شده با کمک شاخصهای ضریب همبستگی (R2)، خطای جذر میانگین مربعات (RMSE) و ضریب ناش-ساتکلیف (NS) مقایسه شدند. مقادیر معیارهای سنجش خطا بهترتیب 0.91، 1.2 و 0.8 برای دوره واسنجی و 0.91، 2.5 و 0.83 برای دوره صحتسنجی بهدست آمد. همچنین، پارامترهای محاسبه شده به کمک الگوریتم نهنگ، میزان بیشترین ذخیره رطوبتی در حوضه 216.95 میلیمتر، تغییرات مکانی ذخیره رطوبت خاک 0.38، عامل توزیع بین دو مخزن رطوبتی 0.98، زمان ماندگاری در مخزن جریان آرام 0.08 روز و زمان ماندگاری در مخزن جریان سریع 0.47 روز است. بررسی مقادیر خطا نشان داد، الگوریتم بهینهسازی نهنگ کارایی بالایی در زمینه واسنجی مدلهای بارش-رواناب دارد.
کلیدواژهها
عنوان مقاله [English]
Improving the performance of the Hymod Model using the Whale optimization algorithm
نویسندگان [English]
- Afsane Farpour 1
- Hosein KhozeymeNezhad 2
1 PhD student in Agricultural Engineering, Water Resources, Department of Water Science and Engineering, University of Birjand
2 Associate Professor, Department of Water Science and Engineering, Agricultural Engineering, Water Structures, University of Birjand, Iran
چکیده [English]
Today, the use of hydrological models is mainly necessary to simulate changes in water source and flow (runoff and evaporation). Proper modeling of hydrological processes requires the determination of model parameters. In calibration processes, the values of the model parameters are estimated so that the model can simulate a natural system well. It is generally impossible to estimate the parameters of such models directly due to the large number of parameters and it is necessary to estimate them with the help of optimization tools (model calibration). In the present study, the parameters of the daily Hymod rainfall-runoff model (a simple conceptual rainfall-runoff model) were calibrated using the Whale algorithm (WOA), which is derived from the way whale food is searched. The evaluation of the mentioned calibration method was performed using daily precipitation, evapotranspiration and transpiration data for 5 years and its validation was performed in 5 years in the Leaf River Basin of the United States. The simulated and observed flow rates were compared using correlation coefficient (R2), root mean square error (RMSE) and Nash-Sutcliffe coefficient (NS). The values of error measurement criteria were 0.91, 1.2 and 0.8 for the calibration period and 0.91, 2.5 and 0.83 for the validation period, respectively. Also, the parameters calculated using the whale algorithm, the maximum moisture storage in the area of 216.95 mm, spatial variation of soil moisture storage 0.38, the distribution factor between the two moisture tanks 0.98, the shelf life in the laminar tank 0.08 days and Shelf life in fast flow tank is 0.47 days. Examination of error values showed that the Whale Optimization Algorithm has high efficiency in calibrating rainfall-runoff models.
کلیدواژهها [English]
- Calibration
- Leaf River Watershed
- Precipitation-Runoff model
- Watershed management
- WOA
- Alamous, E.A., E. Obada and A. Afouda. 2017. Assessment of future water resources availability under climate change scenarios in the Mékrou Basin, Hydrology, 4(51): 1-21.
- Arsenault, R., A. Poulin, P. Cote and F. Brissette. 2014. Comparison of stochastic optimization algorithms in hydrological model calibration. Journal of Hydrologic Engineering, 19(7): 1374-1384.
- J. 2009. Gladstone. LNG facility, Development–Surface Water EIS. Final Report, URS Australia Pty LTD, 84 pages.
- Boyle, D.P. 2000. Multicriteria calibration of hydrologic models. PhD Thesis, University of Arizona, Tucson, 134 pages.
- Dastorani, M.T., A. Talebi. A.M. Heidari and S. Poormohammadi. 2010. Investigation of the effects of climate change on the temperature of the Torogh Dam in Mashhad. Fifth National Conference on Watershed Management and Soil and Water Resources Management, Kerman (in Persian).
- Dawson, C.W. and R. Wilby. 1998. An artificial neural network approach for rainfall-runoff modeling. Journal of Hydrology Science, 43: 47-66.
- Duan, Q., S. Sorooshian and V.K. Gupta. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3): 501–521.
- Duan, Q., S. Sorooshian and V.K. Gupta. 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158: 265-284.
- Ghorbani, Kh., M. Salarijazi, M. Abdolhoseini, S. Eslamian and I. Ahmadianfar. 2019. Evaluation of Clark IUH in rainfall-runoff modelling, case study: Amameh Basin. Journal of Hydrology Science and Technology, 9(2): 137-153.
- Gupta, H.V., S. Sorooshian and P.O. Yapo.1999. Status of automatic calibration for hydrologic models, comparison with multi-level expert calibration. Journal of Hydrologic Engineering, 4(2): 135-153.
- Kamali, B., J. Mousavi and K.C. Abbaspour. 2013. Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrological Processes, 27: 4028–4042.
- Kishor, Ch., P. Balram and Ch. Jagadish. 2014. Simulation of rainfall-runoff process using HEC-HMS model for Balijore Nala Watershed, Odisha, India. International Journal of Geometrics and Geosciences, 5(2): 235-265.
- Lorrai, M. and G.M. Sechi. 1995. Neural net for modeling rainfall-runoff transformation. Water Resources Management, 9(4): 299-313.
- Madsen, H. 2000. Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. Journal of Hydrology, 235: 276–288.
- Mirjalili, S. and A. Lewis. 2016. The Whale optimization algorithm. Advances in Engineering Software, 95: 51-67.
- Noorani, V., S. Khajeh Mohammadilar and H. Del Afrooz. 2008. Optimization of rainfall-runoff model of Imameh reagent basin using genetic algorithm. Third Water Resources Management Conference, Tabriz (in Persian).
- Sartip, F., F. Radmanesh, H. Zarei and M. Salarijszi. 2016. Automatic calibration of the continuous HMS-SMA rainfall-runoff, model using the Metaheuristic Algorithm, case study: Kasilian Basin. Irrigation Sciences and Engineering, 41(3): 15-28.
- Sorooshian, S. 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models' influence of calibration data variability and length on model credibility. Water Resource Research, 19(1): 251-259.
- Tolson, B.A. and C.A. Shoemaker. 2007. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1): W01413.
- Vrugt, J., C. Ter Braak, H. Gupta and B. Robinson. 2009. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling. Stochastic Environmental Research and Risk Assessment, 23(7): 1011-1026.
- Vrugt, J.A., H.V. Gupta, W. Bouten and S.A. Sorooshian. 2003. Shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39(8): 1201-1216.
- Wagener, T., D.P. Boyle, M.J. Lees, H.S. Wheater, H.V. Gupta and S. Sorooshian. 2001. Framework for development and application of hydrologic models. Hydrology and Earth System Sciences, 5(1): 13–26.
- Wang, G., J. He and Zhang. 2007. Comparison of hydrological models in the middle reaches of the Yellow River. International Association of Hydrological Sciences, 311: 158-163.
- Yapo, P., H.V. Gupta and S. Sorooshian. Automatic Calibration of conceptual rainfall-runoff models, sensitivity to calibration data. Journal of Hydrology, 181: 23-48.
- Yapo, P., H.V. Gupta and S. Sorooshian. 1997. Multi-objective global optimization or hydrologic models. Journal of Hydrology, 204: 83-97.
- Yu, B. and Z.A. Zhu. 2015. Comparative assessment of AWBM and SimHyd for forested Hydrological Sciences Journal, 60(7–8): 1200-1212.