با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشکده عمران، دانشگاه صنعتی شاهرود

2 استادیار گروه مهندسی آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود

3 استادیار گروه نقشه‌برداری، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود

4 دانشجوی دکتری مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود

چکیده

تخمین بارش در محاسبات بیلان انرژی، مطالعات هیدرولوژیکی، هواشناسی و اهداف کشاورزی، صنعتی، خانگی و آشامیدنی از اهمیت والایی برخوردار است. با توجه به اهمیت داده‌های بارش در علوم مختلف و فقدان شبکه باران‌سنجی گسترده و مناسب به‌­ویژه در حوزه‌های آبخیز کوهستانی، لازم است داده‌های بارش به‌­نحوی برآورد و دقت آن‌ها ارزیابی شود. هدف از این تحقیق، ارزیابی داده‌های بارش سه محصول ماهواره‌ای IMERG از نوع Near Real Time، 3B42RT-7 از نوع Real Time و PERSIANN-CDR از نوع Final Run در بازه زمانی 2000.06.01 تا 2018.09.31 در 41 ایستگاه باران‌سنجی و سه ایستگاه سینوپتیک در داخل و اطراف حوزه آبخیز نیشابور در مقیاس زمانی روزانه و ماهانه است. بررسی شاخص‌های آماری مختلف نشان داد که هیچ‌یک از سه محصول ماهواره‌ای نماینده مناسبی برای داده‌های زمینی در وسعت منطقه‌ای در مقیاس روزانه نیستند. لذا، استفاده از این محصولات در مقیاس روزانه در این حوضه در مدل‌های هیدرولوژیکی توصیه نمی‌شود. از سوی دیگر، مقیاس ماهانه به­‌واسطه تعدیل خطای برآورد بارش‌های روزانه، هر سه محصول بارش ماهواره‌ای عملکرد به­‌مراتب بهتری را نشان دادند. به‌طوری‌که میانگین همبستگی و ضریب نش‌ساتکلیف PERSIANN-CDR با داده‌های بارش ماهانه در سطح حوضه به­‌ترتیب در حدود 90 درصد و 0.75 و ارزیابی این محصول به­‌مراتب بهتر از دو محصول 3B42RT-7 و IMERG است. بر­ این ­اساس، استفاده از محصولات بارش ماهواره‌ای مقیاس ماهانه از نوع Final Run در مطالعات بیلان آب به‌­ویژه در حوضه‌های فاقد آمار، می‌توانند مورد ­توجه قرار گیرند.

کلیدواژه‌ها

عنوان مقاله [English]

Statistical assessment of satellite rainfall products in daily and monthly gauge spatial scales

نویسندگان [English]

  • Zahra Khanmohammadi 1
  • Emad Mahjoobi 2
  • Saeid Gharachelou 3
  • Ashkan Banikhedmat 4

1 MSc Student, Water Resources Engineering and Management, Faculty of Civil Engineering, Shahrood University of Technology

2 Assistant Professor. Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology

3 Assistant Professor, Department of Surveying, Faculty of Civil Engineering, Shahrood University of Technology

4 PhD student of Water Resources Engineering and Management, Faculty of Civil Engineering, Shahrood University of Technology

چکیده [English]

Precipitation estimation is of great importance in energy balance calculations, hydrological studies, meteorology and agricultural, industrial, domestic and drinking purposes. Due to the importance of precipitation data in various sciences and the lack of an extensive and appropriate rainfall network, especially in mountainous catchments, it is necessary to estimate precipitation data and evaluate their accuracy. The purpose of this study is to evaluate the precipitation data of three IMERG satellite products of near real-time type, 3B42RT-7 of real-time type and PERSIANN-CDR of final-run type in the period of 06/01/2000 to 09/31/2018 in 41 rain gauge stations and three synoptic stations in and around the Neishabour Catchment area on a daily and monthly time scale. Examination of various statistical indicators showed that none of the three satellite products is a good representative of terrestrial data on a regional and daily scale. Therefore, the use of these products on a daily basis in this basin in hydrological models is not recommended. On the other hand, the monthly scale showed much better performance due to the adjustment of the error of estimating daily precipitation. So that, the correlation coefficient and Nash Sutcliffe coefficient of PERSIANN-CDR with monthly precipitation data in the basin are about 90% and 0.75, respectively, and the evaluation of this product is much better than the two products 3B42RT-7 and IMERG. Accordingly, the use of monthly scale precipitation products of the final-run type in water balance studies, especially in basins without statistics, can be considered.

کلیدواژه‌ها [English]

  • IMERG
  • Neishabour Watershed
  • PERSIANN-CDR
  • Remote sensing
  • TRMM
  1. Abdullahi, B., M. Hosseini Moghari and K. Ebrahimi. 2017. Evaluation of TRMM-3B42RT-V7 and CMORPH satellite data to estimate precipitation in Gorganrood Basin. Iranian Watershed Management Science and Engineering, 11(36): 55-68 (in Persian).
  2. Adane, G.B., B.A. Hirpa, B.M. Gebru, C. Song and W.K. Lee. 2021. Integrating satellite rainfall estimates with hydrological water balance model: rainfall-runoff modeling in Awash River Basin, Ethiopia. Water, 13(6): 800.
  3. Alibakhshi, M., A. Farid Hosseini, K. Referee, A. Alizadeh and H.M. Gascha. 2016. Statistical comparison between IMERG and TMPA 3B42V7 products at the level of three precipitation data GPM and TRMM, case study: Kashfaroud Catchment, Khorasan Razavi Province. Rangeland and Watershed Management, Iranian Journal of Natural Resources, 69(4): 963-981(in Persian).
  4. APDRC. 2008. Asia-pacific data research center. Available online at: http://apdrc.soest.hawaii.edu/, accessed 2008.
  5. Bihamta, A., H. Goharnejad and P. Moazami. 2018. Review of GPM and TRMM-3B42-V7 satellite precipitation data on daily, monthly and seasonal scales. Remote Sensing and Iran GIS, 10(2): 45-60 (in Persian).
  6. Chen, X. and G. Huang. 2020. Applicability and hydrologic substitutability of TMPA satellite precipitation product in the Feilaixia Catchment, China. Water, 12(6): 1803.
  7. Erfanian, M., S. Kazempoor and H. Heydari. 2016. Calibration of rain data of 3B42 and 3B43 series of TRMM satellites in climatic zones of Iran. Natural Geography Research, 48(2): 287-303 (in Persian).
  8. Ghorbani, L., R. Jafari and H. Human. 2019. Evaluation of monthly and annual production efficiency of PERSIANN and PERSIANN-CDR in estimating rainfall in semi-arid regions of Zagros. Journal of Desert Management, 7(14): 15-28 (in Persian).
  9. Han, P., D. Long, Z. Han, M. Du, L. Dai and X. Hao. 2019. Improved understanding of snowmelt runoff from the headwaters of China's Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224: 44-59.
  10. Jiang, S., L. Ren, B. Yong, Y. Hong, X. Yang and F. Yuan. 2016. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chinese Geographical Science, 26(4): 439-455.
  11. Katiraie-Boroujerdy, P.S., A.A. Asanjan, K.L. Hsu and S. Sorooshian. 2017. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmospheric Research, 193: 36-49.
  12. Li, D., G. Christakos, X. Ding and J. Wu. 2018. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi Catchment (Taihu Lake Basin, China). Journal of Hydrology, 556: 1139-1152.
  13. Li, X.H., Q. Zhang and C.Y. Xu. 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang Catchment, Poyang Lake Basin. Journal of Hydrology, 426: 28-38.
  14. Masih, I., S. Maskey, S. Uhlenbrook and V. Smakhtin. 2011. Assessing the impact of areal precipitation input on streamflow simulations using the SWAT Model 1. JAWRA Journal of the American Water Resources Association, 47(1): 179-195.
  15. Mastrantonas, N., B. Bhattacharya, Y. Shibuo, M. Rasmy, G. Espinoza-Dávalos and D. Solomatine. 2019. Evaluating the benefits of merging near-real-time satellite precipitation products: a case study in the Kinu Basin region, Japan. Journal of Hydrometeorology, 20(6): 1213-1233.
  16. Miri, M., M. Rahimi and A. Nowruz. 2019. Assessing the accuracy of estimating daily precipitation of TRMM and GPM databases versus observational data in Iran. Journal of Watershed Engineering and Management, 11(4): 983-972.
  17. Nguyen, T.H., I. Masih, Y.A. Mohamed and P. Van der Zaag. 2018. Validating rainfall-runoff modeling using satellite-based and reanalysis precipitation products in the Sre Pok Catchment, the Mekong River Basin. Geosciences, 8(5): 164.
  18. Orellana-Alvear, J., R. Célleri, R. Rollenbeck, P. Muñoz, P. Contreras and J. Bendix. 2020. Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model. Remote Sensing, 12(12): 1986.
  19. Panthi, J., P. Dahal, M.L. Shrestha, S. Aryal, N.Y. Krakauer, S.M. Pradhanang and R. Karki. 2015. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate, 3(1): 210-226.
  20. Ruan, H., S. Zou, D. Yang, Y. Wang, Z. Yin, Z. Lu and B. Xu. 2017. Runoff simulation by SWAT model using high-resolution gridded precipitation in the upper Heihe River Basin, northeastern Tibetan Plateau. Water, 9(11): 866.
  21. Serrat‐Capdevila, A., J.B. Valdes and E.Z. Stakhiv. 2014. Water management applications for satellite precipitation products: synthesis and recommendations. JAWRA Journal of the American Water Resources Association, 50(2): 509-525.
  22. Sharifi, E., R. Steinacker and B. Saghafian. 2018. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmospheric Research, 206: 46-63.
  23. Song, Y., J. Zhang, X. Meng, Y. Zhou, Y. Lai and Y. Cao. 2020. Comparison study of multiple precipitation forcing data on hydrological modeling and projection in the Qujiang River Basin. Water, 12(9): 2626.
  24. Tan, X., B. Yong and L. Ren. 2018. Error features of the hourly GSMaP multi-satellite precipitation estimates over nine major basins of China. Hydrology Research, 49(3): 761-779.
  25. Talchabhadel, R., A. Aryal, K. Kawaike, K. Yamanoi, H. Nakagawa, B. Bhatta, S. Karki and B.R. Thapa, 2021. Evaluation of precipitation elasticity using precipitation data from ground and satellite-based estimates and watershed modeling in Western Nepal. Journal of Hydrology: Regional Studies, 33: 100768.
  26. Tobin, K.J. and M.E. Bennett. 2013. Temporal analysis of Soil and Water Assessment Tool (SWAT) performance based on remotely sensed precipitation products. Hydrological Processes, 27(4): 505-514.
  27. Vu, T.T., L. Li and K.S. Jun. 2018. Evaluation of multi-satellite precipitation products for streamflow simulations: a case study for the Han River Basin in the Korean Peninsula, East Asia. Water, 10(5): 642.
  28. Wang, X., B. Li, Y. Chen, H. Guo, Y. Wang and L. Lian. 2020. Applicability evaluation of multisource satellite precipitation data for hydrological research in arid mountainous areas. Remote Sensing, 12(18): 2886.
  29. Weerts, A., M.F. Rios Gaona, A. Overeem, H. Leijnse and R. Uijlenhoet. 2016. First-year evaluation of GPM-rainfall over the Netherlands: IMERG day 1 final run (V03D). The American Geophysical Union (AGU) Fall Meeting, 15 pages.
  30. Yuan, F., L. Zhang, K.W.W. Win, L. Ren, C. Zhao, Y. Zhu and Y. Liu. 2017. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sensing, 9(3): 302.
  31. Zandi Dargharibi, F., Z. Khorsandi Koohestani, M. Mazin and N. Arman. 2017. Evaluation of the efficiency of GR4J and GR2M rainfall-runoff models in simulating watershed flow in Takht. Journal of Watershed Engineering and Management, 9(3): 370-360 (in Persian).
  32. Zanganeh Inalu, M., B. Ghahraman and F. Hosseini. 2018. Comparison of observable precipitation values and precipitation information of PERSIANN and CMORPH satellites ‌introspection methods on an hourly and daily scale, case study: Shapur Catchment. Iranian Water Resources Research, 14(4): 1-12 (in Persian).
  33. Zeng, Q., H. Chen, C.Y. Xu, M.X. Jie, J. Chen, S.L. Guo and J. Liu. 2018. The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach. Journal of hydrology, 563: 106-122.
  34. Zubieta, R., A. Getirana, J.C. Espinoza and W. Lavado. 2015. Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon Basin of Peru and Ecuador. Journal of Hydrology, 528: 599-612.