با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور و و سیستم اطلاعات جغرافیایی- مطالعات آب و خاک

2 دانشیار پژوهشکده حفاظت خاک و آبخیزداری سازمان تحقیقات و آموزش و ترویج کشاورزی

3 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، سازمان زمین شناسی و اکتشافات معدنی کشور

4 استادیار گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران

5 دانشیار، گروه انرژی‏ های نو و محیط ‏زیست، دانشکدۀ علوم و فنون نوین، دانشگاه تهران

چکیده

در دهه اخیر، استفاده از سنجش از دور در شناسایی و ارزیابی بلایای طبیعی به‌خصوص پدیده سیل نقش بسزایی داشته است. از جمله این تکنیک­‌ها می‌توان به الگوریتم ماشین بردار پشتیبان در آشکارسازی تغییرات (Change Detection) اشاره کرد. هدف این تحقیق، بررسی قابلیت این روش‌­ها در آشکارسازی اثرات سیل بر تالاب گوری بلمک و تالاب‌های سه‌گانه پل‌دختر در قسمت شمالی حوزه آبخیز مولاب و خروجی حوزه آبخیز پل‌دختر واقع در استان لرستان است که در فروردین سال 1398 با سیلاب‌های مهیبی مواجه شدند. بدین‌منظور، نقشه کاربری اراضی منطقه با اعمال طبقه‌بندی نظارت شده و بهره­‌گیری از الگوریتم ماشین بردار پشتیبان و استفاده از داده­‌های تصویری ماهواره لندست 8 در سال‌های 2013، 2015، 2017 و 2019 میلادی تهیه شد. صحت‌سنجی نقشه‌­ها با استفاده از شاخص‌­های ریاضی-آماری کاپا و دقت کلی، نشانگر دقت بالای نقشه­‌های تهیه شده است. به‌طوری‌که ضریب کاپا به‌ترتیب برای نقشه­‌های سال‌های مورد مطالعه برابر با 0.87، 0.84، 0.83 و 0.87 و دقت کلی 90.02، 89.51، 88.11 و 90.32 محاسبه شد. سپس، با استخراج طبقه آب، اقدام به آشکار­سازی تغییرات رخ داده بر پیکره‌ آبی تالاب‌­ها شد. نتایج نشان داد که تالاب گوری بلمک به سبب خشکسالی سال 2015، افزایش 112.08 هکتاری زمین­‌های زراعی اطراف بین سال­‌های 2013 تا 2019 و همچنین، خصوصیات توپوگرافیکی به‌ویژه شیب کمتر نسبت به تالاب‌های سه‌گانه، متحمل تغییرات وسیع‌­تری شده است. این تالاب در سال 2019 با جذب سیلاب و ذخیره‌سازی آن، پهنه آبی خود را به شکل قابل توجهی تا 47.08 هکتار نسبت به سال 2017 افزایش داده و به مساحتی برابر با 146.15 هکتار رسیده است. شباهت نتایج به‌دست آمده در این تحقیق، با نتایج پژوهش انجام شده در منطقه مورد مطالعه به‌وسیله سرویس مدیریت اضطراری کوپرنیکوس (EMS) و تیم تحقیقاتی Geoinformatics Unit بر سیل سال 1398، معرف دقت بالای فنون مورد استفاده و نتایج تحقیق حاضر می‌­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the effect of flood on the restoration of the water body of selected wetlands in the Molab Watershed by remote sensing, case study: Gori-Balmak Wetland and Poldokhtar triple wetlands

نویسندگان [English]

  • Parastoo Karimi 1
  • Masoud kherkhah zarkesh 2
  • Payam Alemi Safaval 3
  • Zahra Azizi 4
  • Hossein Yousefi 5

1 MSc Remote Sensing and GIS- Research water and Soil,

2 Associate Professor of Soil Conservation and Watershed Management Research Organization, Education and Agriculture

3 MSc Remote Sensing and GIS,, Geological Survey and Mineral Exploration of Iran

4 Assistant Professor, Department of RS-GIS, science and Research Branch, Islamic Azad university, Tehran, Iran

5 Associate Professor of Renewable Energies and Environment Faculty of New Sciences and Technologies, Tehran University

چکیده [English]

In the last decade, the use of remote sensing has played an important role in identifying and assessing natural disasters, especially floods. Among these techniques, the Support Vector Machine algorithm (SVM) and Change Detection technique can be mentioned. The main objective of this study was to evaluate the capability of these techniques in determining the effects of flood in Gori Belmak Wetland and Poldokhtar triple wetlands in the north of Molab and outlet of Poldokhtar watersheds in Lorestan Province, which was faced with flood in April 2019. The land use maps of the region were prepared by applying supervised classification method and the SVM on the Landsat 8 satellite image in the 2013, 2015, 2017 and 2019. Validation of the maps and techniques using indicators of kappa and overall accuracy, showed the high accuracy of maps prepared. The kappa coefficient was calculated to be 0.87, 0.84, 0.83 and 0.87 for the maps of the studied years and the overall accuracy was 90.02, 89.51, 88.11 and 90.32, respectively. By extracting the water class, the changes that occurred on the water body of the wetlands were detected. The results showed that Gori Belmak Wetland, undergo extensive changes due to reasons such as drought in 2015, increase of 112.08 ha of surrounding arable lands between 2013 and 2019, as well as topographic features, especially lower slope than the three wetlands. In 2019, with the storage of flood, this wetland increased to 47.08 ha compared to 2017 and reached an area of 146.15 ha. The similarity of the results obtained in this study with the results of the research conducted in the study area by the Copernicus Emergency Management Service (EMS) and the Geoinformatics Unit research team on the flood of 2019 indicates the high accuracy of the used techniques and results of the present research.

کلیدواژه‌ها [English]

  • Changing Procedure
  • Karkheh Watershed
  • Lorestan Province
  • Supervised Classification
  • Support Vector Machine algorithm (SVM)
  1. Abbasi, B., H. Arefi, B. Bigdeli and S. Roessner. 2015. Automatic generation of training data for hyperspectral image classification using support vector machine. 36th International Symposium on Remote Sensing of Environment, Berlin, Germany.
  2. Akbari, E., M.A. Zanganeh Asadi and E. Taghavi. 2016. Change detectionn land use and land cover regional neyshabour using different methods of statistical training theory. Geographical Planning of Space Quarterly Journal, 6(20): 35-50 (in Persian).
  3. Alizadeh, A. 2015. Principles of applied hydrology. Imam Reza University, 942 pages (in Persian).
  4. Almasi, P. and S. Soltani. 2016. Assessment of the climate change impacts on food frequency, case study: Bazoft Basin, Iran. Stochastic Environmental Research and Risk Assessment (SERRA), 31(5): 1–12.
  5. 2008. Copernicus Emergency Management Service. Available online at: http://floodlist.com/asia/iran-floods-lorestan-february-2020.
  6. Geoinformatics Unit. 2019. Available online at: https://www.geoinformatics2018.com/ post/22/,Accessed 26, March 2019.
  7. Ghorbani, R., A. Taghipour and H. Mahmoudzadeh. 2012. Evaluation and analysis of land use changes in the area of Alagol, Almagol and Aji Gol Torkaman‌Sahra international wetlands using multi-time satellite images. Journal of Geography and Environmental Planning, 23(4): 167-186 (in Persian).
  8. Jones, K., Lanthier, P.V. der Voet, E.V. Valkengoed, D. Taylor and D. Prieto. 2008. Monitoring and assessment of wetlands using earth observation: the globwetland project. Journal of Environmental Management, 90(7): 2154-2169.
  9. Kim, K.G., H. Lee and D.H. Lee. 2011. Wetland restoration to enhance biodiversity in urban areas: a comparative analysis. Landscape Ecological Engineering, 7: 27-32.
  10. Lambin, E.F. and H. Geist. 2006. Land-use and land-cover change: local processes and global impacts. Springer, Berlin, Heidelberg, 222 pages.
  11. Mahdi Nasab, M. and A. Mahdi Nasab. 2019. A survey of indigenous students' attitudes towards the functioning and participatory management of Gori-Balmak Wetland. Journal of Wetland Ecobiology, 12(44): 111-119 (in Persian).
  12. Majnounian, H. 1998. Classification and protection of wetlands, values and functions. Publications of the Environmental Protection Organization, 170 pages (in Persian).
  13. Medina, M., K.A. Gregus, R.H. Nichol and S.M. O'Toole. 2015. Gomez TM adation and axon guidance by growth cone invadosomes. Development February, 142: 486-96.
  14. Mitsch, W.J. and J.G. Gosselink. 1993. Wetlands. 2nd ed., Van Nostrand Reinhold, New York, 163 pages.
  15. Negaresh, H., B. Parvaneh and M. Mahdi Nasab. 2013. Feasibility study of tourism development of Poldokhtar wetlands based on SWOT analytical model. Journal of Human Settlement Planning Studies, 8(22): 1-13 (in Persian).
  16. Niknejad, M., V. Mirzaeizadeh and M. Heydari. 2014. Comparing different classifications of satellite imagery in forest mapping, case study: Zagros forests in Iran. International Research Journal of Applied and Basic Science, 8(7): 1407-1415.
  17. Piri, H. 2010. Estimation of environmental water needs of Hamoon wetland. Wet Journal, 2(6): 57-69 (in Persian).
  18. Rahimi Balouchi, L., A. Zar Kar and B. Malek Mohammadi. 2012. Investigation of environmental changes using remote sensing and water quality index, case study: Shadegan International Wetland. Journal of Remote Sensing and GIS Application in Natural Resources Sciences, 3(4): 43-55 (in Persian).
  19. Shayan, S. and M. Janati. 2007. Identification of boundary fluctuations and drawing of the distribution map of suspended matter in Lake Urmia using satellite images (ETM, TM and LISSIII sensors). Journal of Geographical Research, 62: 25-39 (in Persian).
  20. Taati, A., F. Sarmadian, A. Mousavi, C. Taghati Hossien Pour and A. H. Esmaili Shahir. 2015. Land use classification using support vector machine and maximum likelihood algorithms by Landsat 5 TM images. Walailak Journal of Science and Technology, 12(8): 681-687.
  21. Tehrany, M.S., B. Pradhan and M.N. Jebur. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512: 332-343.
  22. Torahi, A.A. and S.C. Rai. 2011. Land cover classification and forest change analysis using satellite imagery, a case study in Dehdez area of Zagros Mountain in Iran. International Journal of Geographical Information Science, 3(1): 1-11.
  23. Torahi, A.A., H. Hasani Moghaddam and R. Adliatiq. 2016. Performance evaluation of support vector machine in land use mapping. Proceedingd of. 2nd Conference of Spatial Information Engineering, KHNTU University. Tehran, Iran (in Persian).
  24. Valizadeh, B., M. Rajabi and S. Dehghani Rad. 2012. Investigating destructive factors and providing appropriate solutions to rehabilitate Poldakhtar wetlands. The First National Conference on Environmental Protection and Planning, Hamadan (in Persian).
  25. Wetland ecosystem services. 2013. Flood control, Fact sheet 1. In Series of 10. Page: 2.
  26. Zamani Faradonbeh, M. 2013. The role and impact of wetlands in flood control and reduction. The first National Conference on Natural Resource Management, Gonbad Kavous University, Iran (in Persian).
  27. Zebardast, L. 2011. Evaluating the trend of changes in Anzali Wetland using remote sensing and providing management solutions. Journal of Environmental Science, 37(57): 57-64 (in Persian).
  28. Zhaoning, G., G. Huili, Z. Wenji, L. Xiaojuan and H. Zhuowei. 2007. Using RS and GIS to monitoring Beijing Wetland resources evolution. IEEE International, 28: 4596–4599.