با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

2 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران

چکیده

یکی از مشکلات شایع و تأثیرگذار در مطالعات اقلیمی، وجود کمبودهای فراوان در سری‌های زمانی داده‌های مختلف اقلیمی و هیدرولوژی است. این‌ پژوهش، با هدف ارزیابی دقت روش‌های بازسازی پارامترهای دمایی در مناطق خشک ایران انجام شده است. برای این منظور، داده‌های روزانه دمای کمینه، متوسط و دمای بیشینه 73 ایستگاه هم­دیدی با پراکنش مناسب در مناطق خشک ایران از آرشیو سازمان هواشناسی کل کشور دریافت و پردازش شد. روش‌های بازسازی مورد استفاده شامل روش‌های نسبت نرمال، رگرسیون خطی، رگرسیون چندگانه و عکس مجذور فاصله (IDW) می‌شوند. در این تحقیق، کارایی هر یک از روش‌های مذکور در بازسازی نبودهای آماری پارامترهای دمایی در مقیاس‌های زمانی روزانه، ماهانه و سالانه مناطق خشک کشور متناسب با میزان نسبت کمبود داده‌های گم‌شده (از پنج تا 50 درصد کمبود داده‌ها) مورد ارزیابی قرار گرفت. برای ارزیابی آماری روش‌های نام‌برده از آماره‌های ضریب همبستگی R، معیار برآورد خطای RMSE و ضریب Nash استفاده شد. نتایج نشان داد که در حالت کلی، هر کدام از روش‌های نام‌برده شده در سطح خاصی از بازسازی و مقیاس زمانی از عملکرد مناسبی برخوردارند. در مقیاس سالانه و ماهانه روش‌های رگرسیون خطی و نسبت نرمال بیشترین دقت در بازسازی داده‌های دما در منطقه خشک ایران را دارند. مقدار همبستگی بین داده‌های بازسازی و مشاهده‌ای در سطوح مختلف با استفاده از این روش‌ها به بیش از 0.95 می‌رسد. در مقیاس روزانه تفاوت قابل ‌توجهی بین دقت روش‌های مورد استفاده در بازسازی داده‌های دمایی وجود ندارد و تقریباً هر چهار روش یاد شده از دقت مناسبی برخوردارند؛ چرا که میزان همبستگی بین داده‌های بازسازی‌شده و مشاهده‌شده به بیش از 90 درصد می‌رسد. با وجود این، روش رگرسیون چندگانه با میانگین همبستگی 99/0 درصد در سطوح مختلف بازسازی از بیشترین دقت در بازسازی داده‌های روزانه برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of the efficiency of common methods of infilling missing data in the arid regions of Iran

نویسندگان [English]

  • Morteza Miri 1
  • Mohammadreza Kousari 1
  • Mehran Zand 2

1 Assistant Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Associate Professor,Soil Conservation and Watershed Management Research Institute,Tehran,Iran

چکیده [English]

One of the most common and effective problems in long-term climate studies is the presence of gaps in the time series of various climatic and hydrological data. Therefore, the present study evaluates the accuracy of methods for infilling missing data of daily, monthly and annual temperature time series in the arid regions of Iran. For this purpose, the observed daily minimum, average and maximum temperature data for the period 1987-2014 measured at 73 synoptic stations distributed all over arid regions of Iran were used. Methods of readjustment used include: Normal ratio method, linear regression, multivariate regression and Inverse Distance Weighting (IDW). In this study, the capability of each mentioned methods for infilling missing data of daily, monthly and annual precipitation time series in the arid regions of the Iran was investigated, while the proportion of missing data varies from 5 to 50% of total data. In order to compare and evaluate the accuracy of the four mentioned methods three statistical indicators, namely the correlation coefficient (R), the Root Mean Square Error (RMSE) and Nash coefficient were used. The results showed that in general, each of the methods mentioned had different functionalities at a special level of readjustment and time scale. On annual and monthly scales, linear regression and normal ratio methods are the most accurate method in readjustment temperature data in the arid region of Iran. The correlation value between the readjustment and observational data at different levels reaches more than 0.95 using these methods. On the daily scale, there is no significant difference between the accuracy of the methods used in the readjustment of temperature data, and almost all four of these methods have appropriate accuracy because in all methods the correlation between readjustment and observed data is more than 90%. However, multivariate regression methods with an average correlation of 0.99 showed the most accurate performance in readjustment daily data at different levels of readjustment. Generally, each method should be used in accordance with the conditions, and therefore it is recommended to develop a software package for infilling missing data.

کلیدواژه‌ها [English]

  • Gap in data
  • Correlation coefficient
  • Linear regression
  • Normal ratio
  • Temperature
  1. Aieb, A., K. Madani, M.L. Scarpa and B. Bonaccorso. 2019. A new approach for processing climate missing databases applied to daily rainfall data in Soummam Watershed, Algeria. Heliyon, 5(2):1247.
  2. Alijani, B. 2006. Climate of Iran. Payam-e-Noor University Press, 125 pages (in Persian).
  3. Gairola, R.M., S. Prakash and P.K. Pal. 2015. Improved rainfall estimation over the Indian monsoon region by synergistic use of Kalpana-1 and rain gauge data. Atmósfera, 28: 51-61.
  4. Hasanpour Kashani, M. and Y. Dinpashoh. 2012. Evaluation of efficiency of different estimation methods for missing climatological data. Stochastic Environmental Research and Risk Assessment, 1(26): 59-71.
  5. Hofstra, N., M. Haylock, M. New, P. Jones and C. Frei. 2008. Comparison of six methods for the interpolation of daily, European climate data. Journal of Geophysical Research: Atmospheres, org/10.1029/2008JD010100.
  6. Hu, M. and Y. Huang. 2020. Atakrig: an R package for multivariate area-to-area and area-to-point kriging predictions. Computers and Geosciences, 139: 104471.doi.org/10.1016/j.cageo.2020. 104471.
  7. Kashani, M.H. and Y. Dinpashoh. 2012. Evaluation of eciency of di erent estimation methods for missing climatological data. Stochastic Environmental Research and Risk Assessment, 26: 59–71.
  8. Khorshiddoust, A.M., Z.M. Nassaji and B. Ghermezcheshmeh. 2012. Time series reconstruction of daily maximum and minimum temperature using nearest neighborhood and artificial neural network techniques, case study: west of Tehran Province. Geographical Space, 12(38): 197-214 (in Persian).
  9. Kim, J.W. and Y.A. Pachepsky. 2010. Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology, 394(3): 305-314.
  10. Kotsiantis, S., A. Kostoulas, S. Lykoudis, A. Argiriou and K. Menagias. 2006. Filling missing temperature values in weather data banks. 2nd IEE International Conference on Intelligent Environments, 5-6 July, 2006, Athens, Greece, 1: 327-334.
  11. Masoudian, S.A. 2011. Climate of Iran, Isfahan. Isfahan University Press, 125 pages (in Persian).
  12. Miri, M., T. Raziei and M. Rahimi. 2016. Evaluation and statistically comparison of TRMM and GPCC datasets with observed precipitation in Iran. Journal of the Earth and Space Physics, 42: 657–672 (in Persian).
  13. Mishra, A.K., R.M. Gairola, A.K. Varma and V.K. Agarwal. 2011. Improved rainfall estimation over the Indian region using satellite infrared technique. Advances in Space Research, 48: 49–55.
  14. Price, D.T., D.W. McKenney, I.A. Nalder, M.F. Hutchinson and J.L. Kesteven. 2000. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology, 101(2-3): 81-94.
  15. Rahimi, J., A. Khalili and J. Bazr Afshan. 2017. Evaluation of different missing data reconstruction methods for daily minimum temperature in elevated stations of Iran: comparison with new proposed approach. Iranian Journal of Soil and Water Research, 48(2): 231-239 (in Persian).
  16. Rees, G. 2008. Hydrological data. In: Gustard, Alan; Demuth, Siegfried, (eds.) Manual on Low-flow Estimation and Prediction. Geneva, Switzerland. World Meteorological Organization, 22-35, 136 pages.
  17. Sadatinezhad, S.J. and M. Mahdavi. 1997. Statistical comparison and different methods of rainfall data reconstruction in Isfahan Province, in natural resources. Tarbiat Modares University, 165 pages (in Persian).
  18. Sattari, M.T., A. Rezazadeh-Joudi and A. Kusiak. 2016. Assessment of different methods for estimation of missing data in precipitation studies. Hydrology Research, 4(48): 1032-1044.
  19. Serrano-Notivoli, R., M. de Luis and S. Beguería. 2017. An R package for daily precipitation climate series reconstruction. Environmental Modelling and Software, 89: 190-195.
  20. Shabalala, Z.P., M. Moeletsi, M. Tongwane and S. Mazibuko. 2019. Evaluation of infilling methods for time series of daily temperature data: case study of Limpopo Province, South Africa. Climate, 7(7): 86-102.
  21. Tardivo, G. and A. Berti. 2014. The selection of predictors in a regression-based method for gap filling in daily temperature datasets. International Journal of Climatology, 34: 1311–1317.
  22. Teegavarapu, R.S. and V. Chandramouli. 2005. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312(1): 191-206.
  23. Wagner, P.D., P. Fiener, F. Wilken, S. Kumar and K. Schneider. 2012. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 464: 388-400.
  24. Xia, Y., P. Fabian, A. Stohl and M. Winterhalter. 1999. Forest climatology: estimation of missing values for Bavaria, Germany. Agricultural and Forest Meteorology, 96(1): 131-144.
  25. You, J., K.G. Hubbard and S. Goddard. 2008. Comparison of methods for spatially estimating station temperatures in a quality control system. International Journal of Climatology, 28(6): 777-787.
  26. Yozgatligil, C., S. Aslan, C. Iyigun and I. Batmaz. 2013. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theoretical and Applied Climatology, 112(1-2): 143-167.