با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی، بخش تحقیقات مرتع، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار، دانشکده منابع طبیعی، دانشگاه جیرفت

3 استادیار، دانشکده ادبیات و علوم انسانی، دانشگاه جیرفت

چکیده

یکی از اثرات تغییرات اقلیمی در دهه‌های اخیر، تغییرات چرخه‌های آبی در مناطق مختلف زمین بوده است. تبخیر و تعرق نیز به‌عنوان یکی از بخش‌های چرخه هیدرولوژی، دستخوش این تغییرات خواهد بود. لذا، در پژوهش حاضر، اثر تغییر اقلیم بر تغییرات تبخیر و تعرق پتانسیل در حوزه آبخیز هلیل‌رود، تحت سناریوهای RCP 2.6 ،RCP 4.5 و RCP 8.5  با استفاده از مدل ریزمقیاس ‌نمایی LARS-WG و خروجی مدل گردش عمومی HadGEM2 در دوره زمانی آتی (2040-2021) مورد بررسی قرار گرفت و با استفاده از پارامترهای اقلیمی پیش‌بینی شده، میزان تبخیر و تعرق در سطح حوضه با استفاده از روش تورنت وایت برای دوره آتی محاسبه شد. بر طبق نتایج حاصل از مدل LARS-WG در سطح حوضه مورد مطالعه، میزان بارش در دوره آتی نسبت به دوره پایه کاهش و میزان دما تحت تمامی سناریوها افزایش خواهد یافت. میزان تبخیر و تعرق نیز بر اساس وضعیت دما و بارش پیش‌بینی شده افزایش خواهد یافت. به‌طوری که نتایج بررسی وضعیت تبخیر و تعرق در سطح حوضه مورد مطالعه حاکی از افزایش میزان تبخیر و تعرق در دوره آتی (2040-2021) نسبت به دوره پایه می‌باشد که این میزان به‌طور متوسط در دهه آتی به میزان 3.4، 6.8 و 8.5 درصد به‌ترتیب تحت سناریوهای RCP 2.6 ،RCP 4.5 و RCP 8.5 خواهد بود. بر طبق نتایج، بیشترین افزایش دما و تبخیر و تعرق و بیشترین کاهش بارش در سطح حوضه مربوط به سناریوی RCP 8.5 می‌باشد. از نتایج حاصل از این پژوهش می‌توان در مطالعات مربوط به مدیریت منابع آب، مطالعات کشاورزی و زیست‌محیطی استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Predicting future changes in potential evapotranspiration based on RCP scenarios in Halilrood Watershed

نویسندگان [English]

  • Saeedeh Nateghi 1
  • Elham Rafiiei sardooi 2
  • Ali Azareh 3
  • Farshad Soleimani Sardoo 2

1 Assistant Professor, Rangeland Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

2 Assistant Professor, Department of Nature Sciences, Faculty of Natural Resources, University of Jiroft, Kerman, Iran

3 Assistant Professor, Department of geography, University of Jiroft, Kerman, Iran

چکیده [English]

Changes in water cycles in different parts of the world is one of the effects of climate change in recent decades. Evapotranspiration, as the part of the hydrological cycle, will also undergo these changes. Therefore, in the present study, the effect of climate change on potential evapotranspiration changes in Halilrood Watershed, under RCP2.6, RCP 4.5 and RCP 8.5 scenarios using LARS-WG downscaling model and the output of the general circulation model of HadGEM2 in future (2021-2040) was studied and the rate of evapotranspiration at the basin scale was calculated based on the predicted climatic parameters using Tornthwaite method in future. According to the results of the LARS-WG model, in the study area, precipitation will decrease and the temperature will increase under all scenarios in future compared to the baseline period. Evapotranspiration will also increase based on the predicted temperature and precipitation. So that, at the basin scale, evapotranspiration will increase by 3.4, 6.8 and 8.5 under RCP 2.6, RCP 4.5 and RCP 8.5 scenarios in future (2040-2021), respectively. According to the results, the highest increase in temperature and evapotranspiration and the highest decrease in precipitation at the basin scale is related to the RCP 8.5 scenario. The results of this study can be used in studies related to water resources management, agricultural and environmental studies.

کلیدواژه‌ها [English]

  • Climate change
  • Downscaling
  • Halilrood Watershed
  • Potential evapotranspiration
  1. Alizadeh, A. 2005. Principles of applied hydrological. Mashhad, Astan Quds Razavi, 807 pages.
  2. Alizadeh, A., G.H. Kamali, F. Mosavi and M. Baygani. 2011. Weather and climatology. Ferdowsi University of Mashhad Press, 14: 1-381.
  3. Babaian, I. and Z. Najafi Nik. 2007. Introducing and evaluating the LARS-WG Model for modeling the climatological parameters of Khorasan Province in 1961-2003. Journal of Nivar, 63: 50-67 (in Persian).
  4. Babolhekami, A., M.A. Gholami Sefidkouhi and A.R. Emadi. 2020. The impact of climate change on reference evapotranspiration in Mazandaran Province. Iranian Journal of Soil and Water Research, 51(2): 387-401 (in Persian).
  5. Bahak, B. 2013. Study of the likelihood of climate change in Kerman Province using Man–Kendall Method, case study: Kerman Station. Journal of Territory, 10(39): 67-74 (in Persian).
  6. Dibike, Y. and P. Coulibaly. 2005. Hydrological impact of climate change in the Saguenay Watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology, 307: 145–163.
  7. Dinpashoh, Y. and M. Foroughi. 2018. Impact of climate change on sudden changes in potential evapotranspiration time series (case study: north west of Iran). Water and Soil Journal, 32(3): 617-632.
  8. Feizi, V., M. Farajzadeh and R. Nowruzi. 2010. Climate change study in Sistan and Baluchestan Province by Mann-Kendall Method. Proceedings of the Fourth International Congress of Geographers of the Islamic World. University of Sistan and Baluchestan.
  9. Fowler, H.J., S. Blenkinsop and C. Tebaldi. 2007 Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. International Journal Climatology, 27: 1547-1578.
  10. Gao, P., X.M. Mu, F. Wang and R. Li. 2011. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences, 15(1): 1–10.
  11. Ghahraman, N., I. Babaeian and M. Tabatabaei. 2016. Investigation the effect of climate change on sugarcane growing season and water requirement under RCP scenarios. Journal of Water and Soil Resources Conservation, 6(1): 63-75.
  12. Goudarzi, M., B. Salahi and S.A. Hosseini. 2018. Estimation of evapotranspiration rate due to climate change in the Urmia Lake Basin. Iran-Watershed Management Science and Engineering, 12(41): 1-13.
  13. Heydari Tasheh Kaboud, S.H. and Y. Khoshkho. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the west of Iran under RCP emission scenarios. Journal of Applied Researches in Geographical Sciences, 19(53): 157-167.
  14. Khadempour, F., H. Khozeymehnezhad and M. Amirabadizadeh. 2019. Investigating the effects of climate change on daily evapotranspiration in models with different mathematical structures in various climates of Iran. Journal of Water Research in Agriculture, 33(1): 149-162.
  15. Mirsaneh, M., A.R. Massah Bavani, S. Bolouk Azari and T. Sohrabi Molayousef. 2010. Evaluation of the effect of climate change on the water requirement of sugar beet and its growth period. The Second National Conference on Comprehensive Management of Water Resources Utilization, Shahid Bahonar University of Kerman.
  16. Kouhi, M. and H. Sanaei Nejad. 2014. Evaluation of climate change scenarios based on two statistical downscaling methods for reference evapotranspiration in Urmia region. Iranian Journal of Irrigation and Drainage, 4(7): 559-574.
  17. Li, Q., X. Wei, M. Zhang, W. Liu, K. Giles-Hansen and Y. Wang. 2018. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed. Journal of Hydrology, 557: 448-459.
  18. Mahdavi, M. 2009. Applied hydrology. University of Tehran Press, 2: 1-260.
  19. Mann, H.B. 1945. Non-parametric tests against trend. Econometrica 13, Mathscinet, 245-259.
  20. Pettitt, A.N. 1979. A non-parametric approach to the change point problem. Applied Statistics, 28: 126-135.
  21. Richardson, C.W. and D.A. Wright. 1984. WGEN: a model for generating daily weather variables. US Department of Agriculture, Agricultural Research Service, ARS-8. USDA, Washington, DC.
  22. Salajegheh, A., E. Rafiei Sardooi, A.R. Moghaddamnia, A. Malekian, S.H. Araghinejad, S.H. Khalighi Sigaroodi and A. Salehpourjam. 2016. Prediction of climatic variables using statistical downscaling model (SDSM) in future under scenario A2. Desert Management Journal, 4(7): 12-25.
  23. Semenov, M.A. and E.M. Barrow. 2002. A Stochastic weather generator for use in climate impact studies: user manual. Harpenden, Hertfordshire, UK.
  24. Semenov, M.A., R.J. Brooks, E.M. Barrow and C.W. Richardson. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates.Climate Research, 10(2): 95-107.
  25. Tao, X.E., H. Chen, C.Y. Xu, Y.K. Hou and M.X. Jie. 2015. Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering, 8(4): 273-281.