با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری و شهرسازی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 استاد گروه مهندسی آب ، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

3 دانشیار گروه مهندسی معماری، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

این پژوهش با هدف تعیین استراتژی­ طراحی نیروگاه هسته­ای در مجاورت رودخانه با ارزیابی ریسک سیل به‌عنوان پیش‌شرط طراحی و برای سایت اتمی دارخوین در مجاورت رودخانه کارون در استان خوزستان به­عنوان مطالعه موردی انجام شده است. در این پژوهش، پس از نمونه‌گیری از فضای برازش یافته بر دبی جریان و با فیلتر کردن و حذف دبی‌های سیلابی که از رودخانه به دشت سیلابی سرریز نمی‌شوند، از مدل هیدرولیکی دو بعدی HECRAS برای تعیین عمق و سرعت جریان در محدوده سایت نیروگاه استفاده به‌عمل آمد. تحلیل فراوانی عمق سیل شبیه‌سازی شده به­وسیله مدل هیدرولیکی نشان داد که توزیع فراوانی عمق جریان و سیلاب مولد آن با یکدیگر متفاوت هستند. طراحی ایمن سایت نیروگاه نیازمند در نظر گرفتن عدم قطعیت عوامل بسیاری است که استفاده از روش­های مرسوم را با مشکل مواجه می‌سازد. در این تحقیق و برای اولین‌بار از تکنیک روزنبلات برای ارزیابی عدم قطعیت و در نهایت، تعیین بیشینه سطح آب محتمل برای جانمایی هسته راکتور استفاده به‌عمل آمد. نتایج نشان می­دهد که برای ایجاد عمق بیشینه محتمل با دوره بازگشت 100 سال باید سیل با دوره بازگشت 10000 سال در کارون در پایین‌دست اهواز به وقوع بپیوندد. روش ارائه شده در این پژوهش، می­تواند مبنای تولید استانداردی برای طراحی نیروگاه­های هسته­ای در مجاورت رودخانه­ها و حفاظت در مقابل سیل قرار گیرد. 

کلیدواژه‌ها

عنوان مقاله [English]

Assessing the uncertainty and risk of design floods at the Darkhovin Nuclear Site

نویسندگان [English]

  • Hajar Malakouti 1
  • Alireza Shokoohi 2
  • Hasan Zolfagharzadeh 3

1 Ph.D. Student of Architecture and Urbanism, Imam Khomeini International University, Qazvin, Iran

2 Professor, Water Engineering Department, Imam Khomeini International University, Qazvin, Iran

3 Associate Professor of Architectural Engineering Department, Imam Khomeini International University, Qazvin, Iran

چکیده [English]

This study aims to determine the design strategy of a nuclear power plant near the river by assessing flood risk as a design precondition and the Darkhovin Nuclear Site near the Karoun River in Khuzestan Province was considered as a case study. In this study, by sampling the probabilistic space fitted to the flow rate and by filtering and removing flood flows that does not overflow from the river to the flood plain, the two-dimensional HEC-RAS hydraulic model was used to determine the depth and flow velocity within the power plant site. Frequency analysis of flood depth simulated by the model for different discharges showed that the frequency distribution of flow depth and the generating flood are different from each other. The safe design of a power plant site requires consideration of the many uncertainties that make it difficult to use conventional methods. In this research, for the first time, the Rosenbluet technique was used to evaluate the uncertainty and finally to determine the maximum possible water level for locating the reactor core. The results show that to create the maximum probable depth with a return period of 100 years, there should be a flood with a return period of 10,000 years in Karoun downstream of Ahvaz. The method presented in this research can be the basis of a standard for the safe design of nuclear power plants in the vicinity of rivers considering flood hazards.

کلیدواژه‌ها [English]

  • Design-based flood risk
  • Flood flows
  • Nuclear power plant
  • River
  • RPEM
  1. Adib, A. and F. Javdan. 2015. Interactive approach for determination of salinity concentration in tidal rivers, case study: the Karun River in Iran. Ain Shams Engineering Journal, 6: 785-793.
  2. Adlouni, E.S.B. and B. Bobee. 2015. Hydrological frequency analysis using HYFRAN-PLUS software. Journal of Decision Support System for Hydrological Risk Assessment, 340: 25-31.
  3. Amirmoradi, K., A. Shokoohi and A. Azizian. 2019. Evaluating risk of economic loss due to river flood in urban areas, study area: Kan Watershed. Iranian Journal of Water and Soil Research, 50(9): 2239-2259 (in Persian).
  4. Bensi, M., F. Ferrante and J. Philip. 2015. Assessment of flood fragility for nuclear power plants: challenges and next steps. 23rd Conference on Structural Mechanics in Reactor Technology, Manchester, United Kingdom, Augest 2015.
  5. Blazkova, S. and K. Beven. 2009. A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Salka Catchment. The Czech Republic, Journal of Water Resource Research, 45(12): 1-12.
  6. Bowles, D. 2014. Probabilistic flood hazard assessment dam performance PRA and nuclear plant risk. Conference: 9th Nuclear Plant Current Issues Symposium, Charlotte, 50 pages.
  7. Climate change toolkit. 2009. Designing for flood risk, Royal Institute of British Architects. Published on:architecture.com/climatechange.
  8. Diez-Herrero, A. and J. Garrote. 2020. Flood risk analysis and assessment, application and uncertainties: a bibliometric review. Water Journal, 12(7): 1-24.
  9. Flavelle, C. and C.F.J. Lin. 2019. U.S nuclear power plants weren’t built for climate change. Bloomberg, Published on: https://www.bloomberg.com/graphics/2019-nuclear-power-plants-climate-change.
  10. Golder Associate. 2015. Technical report on flood hazard assessment for nuclear power plants in Canada. Final Report, Report Number 1411008-3, Canadian Nuclear Safety Commission.
  11. Goodarzi, E., M. Ziaei and L. Teang Shui. 2013. Introduction to risk and uncertainty in hydrosysetm engineering. Topics in Safety, Risk, Reliability and Quality, 22: 16-44.
  12. Gracia, L.A., M.L. Martinez, I. Escuder-Bueno and A. Serrano-Lombillo. 2012. Assessing the impact of uncertainty on flood risk estimates with reliability analysis using 1-D and 2-D hydraulic models. Journal of Hydrology and Earth System Science and Discussions, 16: 1985-1994.
  13. Grari, A., M. Chourak, F. Boushaba and S. Cherif. 2017. Characterization of river floods on the plain of Saidia. Journal of Materials and Environmental Sciences, 8: 4734-4743.
  14. 2003. Flood hazard for nuclear power plants on coastal and river sites. IAEA Safety Standard Series, No. Ns-G-3.5, 83 pages, www.iaea.org.
  15. 2009. Implementation of the NPT safeguards agreement in the Islamic Republic of Iran. www.iaea.org.
  16. 2011a. Safety in the utilization and modification of research reactors, specific safety guide. IAEA Safety Standards Series, No. SSG24, 68 pages, www.iaea.org.
  17. 2011b. A methodology to assess the safety vulnerabilities of nuclear power plants against site specific extreme natural hazard. 96 pages, www.iaea.org
  18. 2012. The Fukushima Daiichi accident. Report by the Director-General, 1254 pages, www.iaea.org.
  19. 2018. Nuclear power reactors in the world. Reference Data Series, 80 pages, www.iaea.org.
  20. Komatina, D. and N. Branisavljevic. 2005. Uncertainty analysis as a complement to flood risk assessment, http://daad.wb.tu.de/fileadmin/BackUsersResources/Risk/Dejan/ UncertaintyAnalysis.pdf.
  21. Montanari, A. and G. Grossi. 2008. Estimation the uncertainty of hydrological forecasts: a statistical approach. Journal of Water Resource Research, 44, Published on: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008WR006897.
  22. Mahdavi, M. 2013. Applied hydrology. 2nd edition, Tehran University, 437 pages.
  23. Ongdas, N., F. Akiyanova, Y. Karakulov, A. Muratbayeva and N. Zinabdin. 2020. Application of HEC-RAS for flood hazard maps generation for Yesil River in Kazakhstan. Journal of Water, 12: 26-42.
  24. Schulenberg, T. and L. Leung. 2016. Super-critical water-cooled reactors. Handbook of GEN IV nuclear reactor, Woodhead Published Series in Energy, 103 pages.
  25. Shahoei, S.V., J. Porhemmat, H. Sedghi, M. Hosseini and A. Saremi. 2018. Monthly runoff simulation through SWAT hydrological model and evaluation of model in calibration and validation periods, case study: Ravansar Sanjabi Basin in Kermanshah Province, Iran. Journal of Watershed Engineering and Management, 10(3): 464-477 (in Persian).
  26. Shokoohi, A., Z. Ganji, J.M. Vali Samani and V.P. Singh. 2018. Analysis of spatial and temporal risk of agricultural loss due to flooding in paddy farms. Paddy Water Environment, 16: 737–748.
  27. Shrestha, L., P. Durga, G. Corzo and D. Solomatine. 2006. Comparison of methods for uncertainty analysis of hydrologic models. 7th International Conference on Hydroinformatics HIC 2006, Nice, France.
  28. Smith, C.D. 2013. The PMF does have a frequency. Canadian Water Resources Journal, 23(1): 1-7.
  29. The international disaster database. 2016. Published on http://www.emdat.be\about.
  30. Tung, Y.K. and B.C. Yen. 2005. Hydrosystem engineering uncertainty analysis. McGraw-Hill, 285 pages.
  31. Wagner, D., M. Casada and J.B. Fussel. 1984. Methodology for flood risk analysis for nuclear power plants. Journal of Low-Probability High-Consequence Risk Analysis, Part of Advances in Risk Analysis, 2: 65-80.
  32. Worldbank group. 2016. Methods in flood hazard and risk assessment. Published on www.worldbank.org.
  33. Yen, C.C. and M.H. Seits. 1987. A comparison of techniques for evaluating hydrologic model uncertainty. Journal of Probabilistic Engineering Mechanics, 2: 25-37.
  34. Yu, P.S., T.C. Yang and S.J. Chen. 2001. Comparison of uncertainty analysis methods for a distributed rainfall-runoff model. Journal of Hydrology, 244: 43-59.
  35. Zbigniew, W., I.P. Kundzewicz and G.R. Brakenridge. 2018. Changes in river flood hazard in Europe: a review. Journal of Hydrology Research, 49(2): 294–302.