با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی علوم و مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

2 دانشیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

3 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی

4 استادیار، دانشکده منابع طبیعی و کشاورزی، دانشگاه هرمزگان

چکیده

طوفان­های گرد و غبار یکی از پدیده‌­های جوی است که تاثیرات منفی زیادی را برای استان هرمزگان که یکی از مهمترین مراکز جمعیتی و گردشگری در جنوب کشور بوده و بخش قابل توجهی از تأسیسات مهم و راهبردی کشور در آن ایجاد شده، به­ همراه داشته است. به همین دلیل، تعیین کانون و مناطق تحت تاثیر طوفان­ و همچنین، شناسایی مسیرهای مهم ورود و حرکت آن­‌ها از مهمترین نیازهای امروز سازمان­‌های مرتبط در این استان است. به­‌منظور بررسی پدیده گرد و غبار در استان هرمزگان، ابتدا کلیه داده­‌های هواشناسی 12 ایستگاه سینوپتیک منطقه بین سال­‌های 2000 تا 2018 میلادی مورد بررسی و واکاوی قرار گرفتند و تعداد 48 رخداد طوفان گرد و غبار که دید افقی در آن­‌ها به کمتر از 1000 متر کاهش پیدا کرده بود، مشخص شد و عملیات آشکارسازی توده گرد و غبار بر روی آن­‌ها با استفاده از تصاویر ماهواره مودیس و تعداد چهار الگوریتم آشکارساز Ackerman ،TDI ،TIIDI و  NDDI انجام شد و مناطق تحت تاثیر طوفان و همچنین، مناطق منشاء آن تعیین شدند. برای مسیریابی حرکت طوفان گرد و غبار از مدل انتشار پخش لاگرانژی ذرات HYSPLIT استفاده شد و مسیرهای ورودی طوفان­‌های گرد و غبار به داخل استان و همچنین، مسیرهای حرکت آن و مناطقی که دارای بیشترین تاثیرات را در این زمینه هستند، مورد شناسایی قرار گرفتند. نتایج مقایسه چهار الگوریتم آشکارساز گرد و غبار، بیانگر کارایی مناسب‌­تر الگوریتم TDI در مقایسه با سایر الگوریتم‌­ها در تشخیص کانون و توده گرد و غبار در منطقه می‌­باشد. بر اساس نتایج، مناطق شرقی استان هرمزگان، تالاب جازموریان، شرق سیستان و بلوچستان، مناطق غربی افغانستان و پاکستان و نیز مناطق مرکزی و جنوبی عربستان از مهمترین کانو­ن­‌های تولید گرد و غبار در منطقه شناخته شدند. بررسی نقشه‌­های مدل HYSPLIT  بیانگر وجود سه مسیر کلی ورود و ایجاد طوفان­‌های گرد و غبار به منطقه می­‌باشد که شامل مناطق جنوب غربی کشور، مسیر جنوبی-شمالی و مسیر شمالی و شمال­ غربی است. همچنین، بر اساس نتایج مدل، در حدود 53.7 درصد مسیر حرکت و انتشار گرد و غبار پس از وقوع طوفان به سمت شمال و شما­ل­ شرقی است که این امر باعث گسترش آلودگی و تشدید غلظت گرد و غبار در شهرهایی نظیر بندرعباس، قشم، میناب، رودان، جیرفت، کهنوج، بم، ایرانشهر، خاش، میرجاوه و زاهدان می‌شود. همچنین، در حدود 22.3 درصد طوفان­‌های منطقه مسیر جنوبی و 14.8 درصد مسیر جنوب ­غربی و 9.2 درصد مسیر شرقی را برای ادامه پیمایش خود در نظر می­‌گیرند.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of dust storm emission in Hormozgan Province using HYSPLIT

نویسندگان [English]

  • Mahmood Damizadeh 1
  • Rasool Mahdavi 2
  • Ali Akbar Noroozi 3
  • Hamid Gholami 2
  • Arshk Hollisaz 4

1 Ph.D. Candidate, Watershed Management Science and Engineering, Faculty of Agricultural and Natural Resources, University of Hormozgan

2 Associate Professor, Faculty of Agricultural and Natural Resources, University of Hormozgan

3 Associate Professor, Soil Conservation & watershed Management Research Institute

4 Assistant Professor, Faculty of Agricultural and Natural Resources, University of Hormozgan

چکیده [English]

Dust storms are one of the atmospheric phenomena which has many negative effects for Hormozgan Province, as one of the most important population and tourism centers in the south and with significant and strategic facilities in the country. For this reason, todays determining the hotspots and areas affected by the storm, as well as identifying important routes of entry and movement is one of the most important needs of relevant organizations in this province. In order to study the dust phenomenon in Hormozgan Province, first, all meteorological data of 12 synoptic stations in the region between 2000 and 2018 were analyzed and 48 dust storm events were identified that their horizontal visibility has decreased to less than 1000 meters and dust mass detection operations were performed using MODIS satellite images and four detection algorithms of Ackerman, TDI, TIIDI and NDDI and areas affected by storm as well as areas of origin were identified. HYSPLIT particle Lagrangian diffusion model was used to route the motion of the dust storm and the entry routes of dust storms into the province also, its routes and areas that have the most impact in this area were identified. Comparing results of four dust detection algorithms indicated better performance of TDI algorithm compared to other algorithms in detecting the focus and mass of dust in the area. According to the results, eastern regions of Hormozgan Province, Jazmourian Wetland, eastern Sistan and Baluchestan, western regions of Afghanistan and Pakistan, as well as central and southern regions of Saudi are one of the most important centers of dust production in the region. Investigating HYSPLIT model maps indicates the existence of three general routes of entry and creation of dust storms in the area which includes the southwestern regions of the country, the south-north route and the north and northwest route. Also, based on model results, about 53.7% of the path of movement and the release of dust after a storm is to the north and northeast direction which causes the spread of pollution and intensification of dust concentration in cities such as Bandar Abbas, Qeshm, Minab, Rudan, Jiroft, Kahnooj, Bam, Iranshahr, Khash, Mirjaveh and Zahedan. Also, about 22.3% of the storms in the region consider the southern route, 14.8% the south-west route and 9.2% the east route to continue their navigation.

کلیدواژه‌ها [English]

  • Affected areas
  • Dust source
  • Horizontal visibility
  • MODIS satellite images
  • Route the motion
  1. Ackerman, S., R. Frey, K. Strabala, LiuL. GumleyB. Baum,  W.P. Menzel, C. Moeller and L. Gumley. 2010. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document MOD35, Madison, WI. University of Wisconsin-Madison, 117 pages.
  2. Ackerman, S.A. 1997. Remote sensing aerosols using satellite infrared observations. Journal of Geophysical Research, 102(D14): 17069-17079.
  3. Ataei, S., A. Mohammadzadeh and A.A. Abkar. 2015. Using decision tree method for dust detection from MODIS satellite image. Geomatics Science and Technology, 4(4): 151-160 (in Persian).
  4. Baddock, M.C., J.E. Bullard and R.G. Bryant. 2009. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7): 1511-1528.
  5. Bahak, B. 2018. Spatial analysis of dust occurrence process in Sistan and Baluchestan Province using statistical methods. Quarterly of Geography (Regional Panning), 8(3): 97-109 (in Persian).
  6. Darmenov, A. and I. Sokolik. 2005. Identifying the regional thermal-IR radiative signature of mineral dust with MODIS. Geophysical Research Letters, 32: 168-183.
  7. Furman, H.K.H. 2003. Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor and Built Environment, 12(6): 419-426.
  8. Hao, X. and J.J. Qu. 2007. Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. Journal of Applied Remote Sensing, 1(1): 13-23.
  9. Hsu, N.C., T. Si-Chee, M.D. and J.R. King. 2004. Aerosol properties over bright reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557- 569.
  10. Jebali, A., Z. Zare, M. Ekhtesasi and R. Jafari. 2019. Performance evaluation of detector algorithms of dust storms in arid lands, case study: Yazd Province. Desert Ecosystem Engineering Journal, 8(23): 85-105 (in Persian).
  11. Jalali, N., F. Iranmanesh and M. Davoodi. 2017. Identification on dust storm sources and their affecting areas in south-west provinces of Iran, using MODIS image. Watershed Engineering and Management, 9(3): 318-331 (in Persian).
  12. Karimi, K., A. Moridnejad, S. Golian, M.V. Samani, D. Karimi and S. Javadi. 20012. Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Canadian Journal of Remote Sensing, 38(5): 586-599.
  13. Kheirandish, Z., J. Bodagh Jamali and B. Rayegani. 2017. Identification of the best algorithm for dust detection using MODIS data. Journal of Natural Environmental Hazards, 7(15): 205-218 (in Persian).
  14. Liu, Y. and R. Liu. 2011. A thermal index from MODIS data for dust detection. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada.
  15. Malakooti, H., S. Babahossaini, A. Nohegar, M. Azadi and M. Mohamadpoor. 2014. Numerical and synoptical study of emission, transport and identify potential sources of a severe dust storm over Middle East. Environmental Erosion Researches, 3(4): 69-80 (in Persian).
  16. Middleton, N.J. 2017. Desert dust hazards: a global review. Aeolian Research, 24: 53-63.
  17. Miller, S.D. 2003. A consolidated technique for enhancing desert dust storms with MODIS. Geophysical Research Letters, 30(20): 135-156.
  18. Mohamed, F.Y., K.A. Sarah and H. Ali. 2018. Dust storms backward Trajectories' and source identification over Kuwait. Atmospheric Research, 212: 158-171.
  19. Noroozi, A., A. 2016. Evaluation of matched filter method for wind erosion mapping Landsat 8 OLI imagery, (central and north west province of Khuzestan). Quarterly Journal of Environmental Erosion Research, 1(21): 89-104 (in Persian).
  20. Ogren, J.A. 1995. A systematic approach to in situ observations of aerosol properties, in R. J. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, Berlin 1994, April 24-29, 216-226.
  21. Qu, J.J., X. Hao, M. Kafatos and L. Wang. 2006. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geoscience and Remote Sensing Letters, 3(4): 484-486.
  22. Rashki, A., P.G. Eriksson, D.G. Rautenbach, W. Kaskaoutis and J. Grote. 2013. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere Dykstra, 90(2): 227-236.
  23. Raygani, B., Z. Kheirandish, F. Kermani, M. Mohammdi Miyab and A. Torabinia. 2017. Identification of active dust sources using remote sensing data and air flow simulation, case study: Alborz Province. Desert Management, 4(8): 15-26 (in Persian).
  24. Roskovensky, J.K. and K.N. Liou. 2003. Detection of thin cirrus from 1.38 μm/0.65 μm reflectance ratio combined with 8.6–11 μm brightness temperature difference. Geophysical Research Letters, 30(19): 112-123.
  25. Roskovensky, J.K. and K.N. Liou. 2005. Differentiating airborne dust from cirrus clouds using MODIS data. Geophysical Research Letters, 32(12): 250-268.
  26. San-Chao, L., L. Qinhuo, G. Maofang,and C. Liangfu. 2006. Detection of dust storms by using daytime and nighttime multi-spectral MODIS images. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA.
  27. Singh, J., Y.J. Noh, S. Agrawal and B. Tyagi. 2018. Dust detection and aerosol properties over Arabian Sea using MODIS data. Earth Systems and Environment, 3: 139–152. 
  28. Taghavi, F., E. Owlad and S.A. Ackerman. 2017. Enhancement and identification of dust events in the south-west region of Iran using satellite observations. Journal of Earth System Science, 126: 28-38.
  29. Wong, M.S., F. Xiao, J. Nichol, J. Fung, J. Kim, J. Campbell and W. Chan. 2015. A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia. Atmospheric Research, 158–159: 89-106.
  30. Zhang, P., N.M. Lu, X. Hu and C.H. Dong. 2006. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Global and Planetary Change, 52(1- 4): 197-206.
  31. Zhao, T.X.P., S. Ackerman and W. Guo. 2010. Dust and smoke detection for multi-channel imagers. Remote Sensing, 2(10): 23-47.