با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مسئول بخش تحقیقات آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان

2 گروه آبخیزداری، دانشکده مرتع و آبخیز، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

4 گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منایع طبیعی ساری، ساری، ایران.

5 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران

چکیده

چکیده:
در حال حاضر انواع روش‌های قابل اعتماد و عملی برای اندازه‌گیری رطوبت خاک از مقیاس نقطه‌ای به مقیاس جهانی وجود دارد. توسعه بسیار دقیق تکنیک‌های اندازه‌گیری و داده‌های کارآمد، سیستم را برای نظارت مستمر قادر می‌سازد. به تازگی پیشرفت قابل توجه در تکنیک سنجش از دور، به جامعه علمی اجازه داده است که نقشه رطوبت خاک را در هر نقطه از جهان به صورت دقیق و مکرر داشته باشند، که این پیشرفت کمک می‌کند برای به دست آوردن داده‌های مورد اطمینان از حوضه‌های دور دست و حوضه-هایی که بدون آمار هستند و از صرف وقت و هزینه اضافی جلوگیری به عمل می‌آورد. مطالب فوق ضرورت انجام این تحقیق را بیان می‌کند. در این تحقیق فرضیه این است که آیا داده‌های سنجش از دور MERRA-LAND در برآورد رطوبت خاک حوزه آبخیز بافت دقت قابل قبولی دارد؟ برای این‌که به جواب این پرسش برسیم، بعد از دانلود داده‌ها و قرائت آن‌ها جهت صحت‌سنجی داده‌ها از روش همبستگی پیرسون بین داده‌های متوسط ماهانه ماهواره و بارندگی متوسط ماهانه ایستگاه‌های سینوپتیک بافت و باران‌سنجی کیسکان در دوره 2009 تا 2013 استفاده شد. نتایج نشان داد که با اطمینان 99 درصد در ایستگاه کیسکان(که در وسط حوضه واقع شده است) و با اطمینان 95 درصد در ایستگاه بافت بین داده‌های متوسط ماهانه رطوبت خاک سطحی دانلود شده با متوسط بارندگی ماهانه همبستگی بالایی وجود دارد، سپس برای مقایسه میانگین بین داده‌های MERRA-LAND از پایگاه سرویس داده‌های علوم زمین گودارد (GES DISC) به عنوان داده‌های پیش‌بینی شده در تاریخ و ساعت مشخص و درصد رطوبت حجمی به دست آمده از 14 نقطه نمونه برداری شده از سطح خاک و منطقه محدوده ریشه در حوزه آبخیز بافت در همان ساعت و تاریخ به عنوان داده‌های درجا استفاده شد. مقایسه میانگین از روش T جفتی در محیط نرم افزار SPSS برای هر دونوع نمونه (سطحی و محدوده ریشه) انجام شد. نتایج نشان داد که به علت بیشتر بودن T محاسبه شده از T جدول با درجه آزادی 13 در مقایسه رطوبت حجمی سطحی و منطقه ریشه با داده‌های دانلود شده سطحی و منطقه ریشه با اطمینان99درصد اختلاف معنی-داری دیده نمی‌شود و می‌توان به بخش‌های اجرایی توصیه کرد تا به جای صرف وقت و هزینه زیاد از درصد رطوبت حجمی ارائه شده از این پایگاه برای پیش بینی و پایش خشکسالی کشاورزی استفاده کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Study of Remote Sensing Data for Monitoring Soil Moisture in Kerman Province (Case Study: Baft Dam Basin)

نویسندگان [English]

  • peyman madanchi 1
  • mahmod habibnejadroshan 2
  • kaka shahedi 3
  • karim soleymani 4
  • Ahmad Fatehi 5

1 kerman Agriculture and natural Resources Research and Education center

2 watershed departement, Faculty of Rangeland and Watershed Management, Sari University of Agricultural Sciences and Natural Resources, sari, iran

3 watershed departement, Faculty of Rangeland and Watershed Management, Sari University of Agricultural Sciences and Natural Resources, sari, iran.

4 watershed departement, Faculty of Rangeland and Watershed Management, Sari University of Agricultural Sciences and Natural Resources, sari, iran.

5 SCWMRI

چکیده [English]

Abstract:
At present, there are a variety of reliable and practical methods for measuring soil moisture from point to world scale. Recently, remarkable progress in remote sensing techniques has allowed the scientific community to accurate and repeatedly map soil moisture anywhere in the world. The above points out the need for this research. In this research, this is the hypothesis, Do MERRA-LAND remote sensing data have an acceptable accuracy in determining the soil moisture content of the baft watershed? To answer this question, After downloading the data and reading them, Pearson correlation method was used to validate the data between monthly average remote sensing data and monthly average precipitation of baft synoptic and Kiskan Rainfall stations measurement in 2009-2013. The results showed 99% confidence in the Kiskan station and 95% confidently at the baft station There is a high correlation between monthly average soil moisture content downloaded with average monthly rainfall, Then, to compare the mean of MERRA-LAND data from the Goddard earth science(GES DISC) As predicted data at the specified date and time and the percentage moisture content obtained from 14 sampling points from the soil surface and the root zone area in the baft basin, the same time and date was used as in-situ data. Mean comparison of T-pair method was performed in SPSS software for each sample. The results showed that due to the higher T calculated from the table T with a degree of freedom 13 compared to the moisture content of the surface area and the root area there is no significant difference with surface download data and root area with 99% confidence. And can be recommended to the executive department Instead of spending a lot of time and cost Use the percentage moisture content provided by this site to predict and monitoring agricultural drought.

کلیدواژه‌ها [English]

  • Keywords: ″Surface Soil Moisture″
  • ″ root zone Soil moisture″
  • ″ Remote Sensing″
  • ″Watershed″
  • ″Goddard Earth Sciences″
  1. Aghakochak, A. 2014. A multivariate approach for persistence-based drought prediction application to the 2010-2011 East Africa droughts. Journal of Hydrology, 519: 1310-1317.
  2. Alijani, B. 2002. Variation of 500hpa flow patterns over Iran and surrounding areas and their relationship with climate of Iran. Theoretical and Applied Climatology, 71: 41- 4.
  3. Azareh, A., R. Rahdari, E.R. Sardoii and F.A. Moghadam. 2014. Investigate the relationship between hydrological and meteorological droughts in Karaj Dam Basin. European Journal of Experimental Biology, 4(3): 102-107.
  4. Bardossy, A. and J. Plate. 1992. Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research, 28(5): 1247-1259.
  5. Behyar, M.B. 2014. Evaluation of soil moisture in Isfahan Province by AMSR-E sensor. Quarterly Journal of Geographic Research, 112: 1-8 (in Persian).
  6. Belayneh, A., J. Adamowski, A.B. Khalil, B. Ozga-Zielinski. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508: 418–429.
  7. Bhuiyan, C. 2008. Desert vegetarian during droughts: response and sensitivity. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37: 907-912.
  8. Bhuiyan, C. 2004. Various drought indices for monitoring drought condition in Aravalli terrain of India. In: Proceedings of the XXth ISPRS Congress, Istanbul, Turkey.
  9. Eslamian, S., A. Zarei and A. Abrishamchi. 2004. Regional estimates of low flows in the river basin of Mazandaran. Journal of Agricultural Sciences and Natural Resources, 8(1): 37-27 (in Persian).
  10. Ezzine, H., A. Bouziane and D. Ouazar. 2014. Seasonal comparisons of meteorological and agricultural drought indices in morocco using open short time-series data. International Journal of Applied Earth Observation and Geoinformation, 26: 36-48.
  11. Golian, S., O. Mazdiyasni and A. Aghakouchak. 2014. Trend in meteorological and agricultural drought in Iran. Applied Climatology, doi:10.1007/s00704-014-11396.
  12. Gumbel, E.J. 1963. Statistical forecast of droughts. Hydrological sciences Journal, 8(1): 5–23.
  13. Guttman, N.B. 1998. Comparing the palmer drought index and the standardized precipitation index 1. Journal of the American Water Resources Association, 34(1): 113-121.
  14. Vangelis, H., D. Tigkas and G. Tsakiris. 2013. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. Journal of Arid Environments, 88: 130-140.
  15. Hao, Z. and A. Aghakouchak. 2013. A multivariate multi-index drought modeling framework. Journal of Hydrometeorology, 15: 89–101.
  16. Tabari, H., J. Nikbakht and P. Hosseinzadeh Talaee. 2013. Hydrological drought assessment in northwestern Iran based on Streamflow Drought Index (SDI). Water Resources Management, 27: 137–151.
  17. Martínez-Fernández, , A.N. González-Zamora and A. Gumuzzio. 2015. A soil water based index as a suitable agricultural drought indicator. Journal of Hydrology, 522: 265–273.
  18. Kagan, 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Journal of Remoteness, 11(18): 1405-1419.
  19. Kogan, F., R. Stark, A. Gitelson, L. Jargalsaikhan, C. Dugrajav and S. Tsooj. 2004. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. Journal of Remoteness, 25(14): 2889-2896.
  20. Mahdavi, M. 2014. Drought forecast using satellite imagery and Markov chain. MSc Thesis,نام دانشگاه ؟ 164 pages.
  21. Mishra, A.K. and V.P. Singh. 2010. A review of drought concepts. Journal of Hydrology, 391: 202-216.
  22. Mishra, A.K and V.P. Singh. 2011. Drought modeling, a review. Journal of Hydrology, 403: 157-179.
  23. Nalbantis, I. 2008. Evaluation of a hydrological drought index. European Water Resources Association, 23(24): 67-77.
  24. Nalbantis, I. and G. Tsakiris. 2009. Assessment of hydrological drought revisited. Water Resources Management, 23: 881–897.
  25. Rienecker, M.M., J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.K. Kim and S. Bloom. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24: 3624–3648.
  26. Reichle, R.H. and R. Koster. 2011. Assessment and enhancement of MERRA land surface hydrology estimates. Journal of Climate, 24: 6322-6338.
  27. Schaefer, G.L., M.H. Cosh and T.J. Jackson. 2007. The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). Journal of Atmospheric and Oceanic Technology, 24: 2073–2077.
  28. Yongang, YI., J. Kimball and R.H. Reichle. 2011. Evaluation of MERRA land surface estimates in preparation for the soil moisture active passive mission. Journal of Climate, 24: 3797-3816.