با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

استفاده از الگوریتم‏‌های فرا‌ ابتکاری در علوم مختلف به‌طور روز افزون در حال گسترش است. کاربرد آن‏‌ها در شناخت و مدل‏‌سازی پدیده‏‌های طبیعی نظیر سیل و خشکسالی به لحاظ طبیعت و مکانیسم پیچیده و تعامل غیر‏خطی عوامل موثر بر آن نمونه‏‌ای از توانایی و پتانسیل این الگوریتم‌‏ها در هیدرولوژی می‌‏باشد. در این مقاله، نخست به معرفی الگوریتم جستجوی موجودات هم‏‌زیست پرداخته می‌‏شود و در ادامه کاربرد آن در بهینه‌‏سازی سامانه‏‌های فازی و با هدف یافتن ناحیه اثر ایستگاه‌‏های واقع در حاشیه جنوبی دریای خزر مورد بحث قرار می‏‌گیرد. این حوضه سالیانه شاهد وقوع سیلاب‏‌های مخرب بوده و متعاقبا صدمات جانی و مالی بوده است. یافته‏‌های این پژوهش برای برآورد سیلاب حوضه و متعاقبا طراحی سازه‌‏های کنترل سیلاب استفاده می‌‏شود. تعداد 61 ایستگاه آب­‌سنجی واقع در این منطقه در ‏نظر گرفته شده، مشخصات فیزیکی، اقلیمی و هیدرولوژیک آن‏‌ها شامل مساحت، محیط، ارتفاع کمینه، ارتفاع بیشینه، ارتفاع متوسط، شیب متوسط، طول آبراهه اصلی، شیب آبراهه اصلی، طول مستطیل معادل، عرض مستطیل معادل، عامل فرم، ضریب شکل، ضریب گراولیوس، ضریب گردی، ضریب فشردگی و بارش متوسط سالیانه تعیین شده است. طبق نتایج حاصل از آزمون تحلیل مولفه‌­های اصلی از بین 16 پارامتر مورد بررسی، مساحت، ارتفاع متوسط، ضریب شکل و ضریب گراولیوس حوضه به­‌همراه بارندگی متوسط حوضه به‌‏عنوان مهمترین عوامل برای آزمون همگنی هستند. این عوامل به‌‏عنوان ورودی سامانه فازی استفاده شد که منجر به تولید نواحی همگن شد. الگوریتم جستجوی موجودات هم‌‏زیست برای بهینه‌‏سازی این گروه‌های همگن و طی فرایند‏های تکراری به‌­کار گرفته شد. در نهایت، عملکرد الگوریتم و صحت و سقم این نتایج به‌­دست آمده با استفاده از آماره ناهمگنی گشتاور خطی ارزیابی شد. بدین‌­ترتیب، تعداد 61 ناحیه اثر که بیانگر نواحی همگن برای هر یک از 61 حوضه مورد مطالعه است، به­‌دست آمد. نتایج این مطالعه بیانگر کارایی روش پیشنهادی در تعیین ناحیه اثر حوزه‏‌های آبخیز منطقه دارد. پراکنش جغرافیایی ناحیه اثر ایستگاه‏‌ها (ایستگاه‏‌های همگن با ایستگاه هدف) نشان می‌‏دهد که مجاورت جغرافیایی الزاما دلالت بر همگنی حوضه‏‌ها ندارد.

کلیدواژه‌ها

عنوان مقاله [English]

Determination of homogenous catchments using Symbiotic Organism Search Algorithm

نویسنده [English]

  • Sattar Chavoshi

Assistant Professor, Soil Conservation and Watershed Management Research Department, Isfahan Agricultural and Natural Resources, Research and Education Center, AREEO, Isfahan, Iran

چکیده [English]

Metaheuristic algorithms have been increasingly used in different fields. The application of these algorithms for identifying and modelling natural phenomena such as flood and drought in terms of complexity and non-linear interactions can be considered as their capability in hydrology. In this paper, Symbiotic Organism Search (SOS) algorithm was first introduced, then its application in tuning fuzzy expert system, aiming to find the region of influence area of hydrometric stations in the Southern Caspian Sea Basin. This basin has regularly experienced flood events, causing human loss and properties damages every year. The outcome of this research is used to estimate floods, and subsequently, to design flood control structures. A total of 61 hydrometric stations were selected in the study area and their physical, climatic and hydrologic characteristics including area, perimeter, minimum elevation, maximum elevation, mean slope, stream length, slope of main stream, equivalent rectangle length, equivalent rectangle width, form factor, shape coefficient, Gravelious factor, round coefficient, and mean annual precipitation were determined. Results indicated that out of 16 parameters, area, mean elevation, form factor, Gravelious factor, and mean annual rainfall, were the most significant parameters in relation to flood by employing the SOS. These variables were used as the input variables into the fuzzy system and SOS algorithm to tune the fuzzy system. Finally, the efficiency of the SOS algorithm was evaluated using the linear torque heterogeneity statistic. Therefore, 61 influence areas were determined that show homogenous areas in 61 watersheds. Results indicated the performance of SOS in determining region of influence of the sub-basins in the study area. In addition, the geographical vicinity is not a suitable criterion for finding homogenous areas.

کلیدواژه‌ها [English]

  • Catchment similarity
  • Meta-heuristic algorithm
  • Optimization
  • Region of influence
  • Regional flood frequency analysis
  1. Abdolhay, A. 2008. Comparison of hydrological homogenization methods for development of flood regional models. MSc Thesis, University Putra Malaysia, 121 pages.
  2. Ahani, A., S. Emamgholizadeh, S. Mousavi Nadoushani and Kh. Azhdari. 2015. Regional flood frequency analysis by hybrid cluster analysis and l-moments. Journal of Watershed Management Research, 6(12): 11-20 (in Persian).
  3. Bozorg-Haddad, O. and A. Azarnivand. 2017. Optimal operation of reservoir systems with the symbiotic organisms search SOS algorithm. Journal of Hydroinformatics, 20(3): 1-14.
  4. Burn, D.H. 1990. An appraisal of the region of influence approach to flood frequency analysis. Hydrological Science Journal, 35: 149–165.
  5. Caniani, D., S. Lioi, I.M. Mancini and S. Masi. 2015. Hierarchical classification of groundwater pollution risk of contaminated sites using fuzzy logic, a case study in the Basilicata region Italy. Water, 7(5): 2013-2036.
  6. Chavoshi, S., W.N. Azmin Sulaiman, B. Saghafian, M.D. Sulaiman and L.A. Manaf. 2012. Soft and hard clustering methods for delineation of hydrological homogeneous regions in the southern strip of the Caspian Sea Watershed. Journal of Flood Risk Management, 5(4): 282-294.
  7. Chavoshi, S., W.N. Azmin Sulaiman, B. Saghafian, M.D. Sulaiman and L.A. Manaf. 2013a. Flood prediction in southern strip of Caspian Sea Watershed. Journal of Water Resources, 40(6): 593-605.
  8. Chavoshi, S., W.N. Azmin Sulaiman, B. Saghafian, M.D. Sulaiman and L.A. Manaf. 2013b. Regionalization by fuzzy expert system based approach optimized by genetic algorithm. Journal of Hydrology, 486: 271-280.
  9. Chen, J. and B.J. Adams. 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology, 318(1-4): 232-249.
  10. Cheng, M.Y. and D. Prayogo. 2014. Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers and Structures, 139: 98–112.
  11. Cigizoglu, H.K. and O. Kisi. 2005. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Hydrology Research, 36(1): 49–64.
  12. Farsadnia, F., P. Haghighat Jou, H. Shamohamadi and A. Moghaddamnia. 2014. Flood regionalization of Mazandaran province's watersheds by using fuzzy clustering algorithm. Watershed Management Science and Engineering, 8(24): 61-65 (in Persian).
  13. Hosking, J.R.M and J.R. Wallis. 1997. Regional frequency analysis: an approach based on l-moments. Cambridge University, 244 pages.
  14. 2010. Surface water and sediment study of Mazandaran basin. Final Report, Ministry of Power and Energy of Iran, 182 pages (in Persian).
  15. Karamouz, M., Nazif and M. Falahi. 2012. Hydrology and hydroclimatology: principles and applications. CRC Press, 740 pages.
  16. Lin, Ch. 2017. A hybrid heuristic optimization approach for leak detection in pipe networks using ordinal optimization approach and the Symbiotic Organism Search. Journal of Water, 9(812): 1-18.
  17. Mirza Hosseini, M., M. Mohseni Saravi and Gh. Zehtabian. 2010. Regional analysis of low flow by hybrid method in Mazandaran Province. Iranian Society of Irrigation and Water Engineering, 1(1): 1-9 (in Persian).
  18. Rostami Kamrood, M., Z. Shahmohamadi Heidari, P. Haghighatjoo and A. Moghadamnia. 2011. Regional flood frequency analysis in Golestan Basin using l-moments. Water Resources Engineering, 4: 39-50 (in Persian).
  19. Saghafian, B. and H. Farazjoo. 2007. Prioritization of hydrologic units with respect to flood potential in Golestan Dam river basin. Watershed Management Science and Engineering, 1(1): 1-11 (in Persian).
  20. Sapp, J. 1994. Evolution by association, a history of symbiosis. New York, Oxford University Press. 272 pages.
  21. Sheikh, Z., A. Dehvari and F. Farsadnia. 2014. Comparison canonical kriging and linear moment’s methods for regional flood frequency analysis in Mazandaran Province. Watershed Management Science and Engineering, 8(25): 25-39 (in Persian).
  22. Talatahari, S., V.P. Singh and Y. Hassanzadeh. 2013. Ant colony optimization for estimating parameters of flood frequency distributions. Metaheuristics in Water, Geotechnical and Transport Engineering, 121–146.
  23. Wang, Y.M. 2009. Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets. Computers and Industrial Engineering, 57: 228-236.