با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فنی مهندسی عمران، دانشگاه تبریز

2 کارشناس ارشد آب و سازه‌های هیدرولیکی، دانشکده فنی مهندسی عمران، دانشگاه تبریز

چکیده

در بیشتر مطالعات منابع آب، مقدار بار بستر با توجه به سختی­‌ها و هزینه­‌های مربوط به اندازه‌­گیری به‌­صورت نسبت ثابتی از بار کل در نظر گرفته می­‌شود که با توجه به تغییرپذیری بالای این نسبت، معقول نیست. در این پژوهش، با استفاده از داده­‌های جمع‌­آوری شده از ۱۹ رودخانه با بستر شنی واقع در ایالات متحده آمریکا به مدل‌سازی بار بستر، بار کل و در نهایت نسبت این دو با ماشین بردار پشتیبان که شاخه­‌ای از روش­‌های هوشمند می‌­باشد، پرداخته شد. سپس نتایج حاصله با روابط کلاسیک مقایسه و مورد ارزیابی و بررسی قرار گرفت. نتایج نشان داد که در تخمین بار بستر و نیز بار کل رسوبی این روش کارایی بسیار بالایی نسبت به روش­‌های کلاسیک داشته، عملکرد آن نیز در پیش‌­بینی نسبت بار بستر به بار کل دارای نتایج قابل قبولی است. در ضمن مدل­‌سازی­‌های مذکور نیز نشان دادند که نسبت سرعت متوسط به سرعت برشی جریان و عدد فرود، تاثیرگذارترین پارامترها در پیش­‌بینی بار بستر، بار کل و نسبت این دو می‌­باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation and prediction of bed to total sediment load in gravel-bed rivers using classic and intelligent methods

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • Saman Shahnazi 2

1 Associate Professor, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 MSc, Faculty of civil engineering, university of Tabriz, Tabriz, Iran

چکیده [English]

In most water resources studies, the bed load transport rate is considered as a constant proportion of total load due to the difficulty and costs associated with measuring of it, which is not reasonable due to the high variability of this ratio. In this study, data collected from 19 coarse-grained rivers in the United States were employed to predict bed load, total load transport rates and the ratio of bed to total sediment load using Support Vector Machine which is a branch of intelligent methods. Next, the results were compared and evaluated with classical methods. Results showed that this method has a very high performance compared to the classical methods and performance criteria in predicting the bed to total sediment load ratio has acceptable results. In addition, the modeling showed that the ratio of average velocity to shear flow velocity and the Froude number is the most effective parameters in predicting bed load, total load and the ratio of these.

کلیدواژه‌ها [English]

  • Bed load
  • Froude number
  • Shear flow velocity
  • Support Vector Machine
  • Classic method
  1. Ackers, P. and W.R. White. 1973. Sediment transport, new approach and analysis. Journal of the Hydraulics Division, 99(11): 2041-2060.
  2. Arabkhedri, M. 2015. Estimation of bed load to suspended load ratio in Dez and Minab rivers. Watershed Engineering and Management, 6(4): 390-399 (in Persian).
  3. Bhattacharya, B., R.K. Price and D.P. Solomatine. 2007. Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering, 133(4): 440-450.
  4. Doan, E., İ. Yüksel, and Ö. Kisi. 2007. Estimation of total sediment load concentration obtained by experimental study using artificial neural networks. Environmental Fluid Mechanic, 7(4): 271-288
  5. Engelund, F and E. Hansen. 1967. A monograph on sediment transport in alluvial streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K.
  6. Graf, W.H. 2001. Fluvial Hydraulics. New York, John Wiley and Sons.
  7. Karim, F.1998. Bed material discharge prediction for nonuniform bed sediments. Journal of Hydraulic Engineering, 124(6): 597-604
  8. Khorram, S and M. Ergil. 2010. A Sensitivity analysis of total load prediction parameters in standard sediment transport equations. JAWRA Journal of the American Water Resources Association, 46(6): 1091-1115.
  9. Khorram, S. and M. Ergil. 2010. Most influential parameters for the bed load sediment flux equations used in alluvial rivers. JAWRA Journal of the American Water Resources Association, 46(6): 1065-1090.
  10. Kitsikoudis, V., E. Sidiropoulos and V. Hrissanthou. 2014. Machine learning utilization for bed load transport in gravel-bed rivers. Water Resources Management, 28(11): 3727-3743.
  11. Lenzi, M.A. and L. Marchi. 2000. Suspended sediment load during floods in a small stream of the Dolomites northeastern Italy. Catena, 39(4): 267-282.
  12. Li, F.C., J. Angelier, R.F. Chen, H.M. Hsieh, B. Deffontaines, C.R. Luo, T.T. Wu and M.C. Lin. 2005. Estimates of present-day erosion based on sediment transport in rivers, a case study in Taiwan. Comptes Rendus Geoscience, 337(13): 1131-1139.
  13. Okcu, D., A.O. Pektas A. Uyumaz, D. Okcu, A.O. Pektas and A. Uyumaz. 2016. Creating a non-linear total sediment load formula using polynomial best subset regression model. Journal of Hydrology, 539: 662-673.
  14. Pitlick, J., Y. Cui and P.R. Wilcock. 2009. Manual for computing bed load transport using BAGS Software. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins.
  15. Pratt-Sitaula, B., M. Garde, D.W. Burbank, M. Oskin, A. Heimsath and E. Gabet. 2007. Bed load-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record. Quaternary Research, (68): 111-120.
  16. Roushangar, K., A. Koosheh, K. Roushangar and A. Koosheh. 2015. Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. Journal of Hydrology, 527: 1142-1152.
  17. Roushangar, K. and R. Ghasempour. 2017. Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Water Science and Technology, 17(2): 537-651.
  18. Roushangar, K., F.V. Mehrabani and J. Shiri. 2014. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). Journal of Hydrology, 514: 114-122.
  19. Sinnakaudan, S.K., S. Sulaiman and S.H. Teoh. 2010. Total bed material load equation for high gradient rivers. Journal of Hydro-Environment Research, 4(3): 243-251.
  20. Turowski, J.M., D. Rickenmann and S.J. Dadson. 2010. The partitioning of the total sediment load of a river into suspended load and bedload, a review of empirical data. Sedimentology, 57(4): 1126-46.
  21. Yang, C.T., R. Marsooli and M.T. Aalami. 2009. Evaluation of total load sediment transport formulas using ANN. International Journal of Sediment Research, 24(3): 274-286
  22. Yang, C.T. 2006. Erosion and sedimentation manual. US Dep. of the Interior, Bureau of Reclamation, Denver, CO.
  23. Yang, C.T. 1996. Sediment transport theory and practice. McGraw-Hill, New York.
  24. Zakaria, N.A., H.M. Azamathulla, C.K. Chang and A.A. Ghani. 2010. Gene expression programming for total bed material load estimation, a case study. Science of the Total Environment, 408(21): 5078-5085.