با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه بین المللی امام حمینی (ره)

2 عضو هیئت علمی گروه مهندسی آب دانشگاه بین المللی امام خمینی (ره)

چکیده

طولانی شدن مدت زمان خشکسالی هواشناسی می‌تواند منجر به شروع خشکسالی هیدرولوژیک گردد. در این پژوهش به تعیین فاصله زمانی میان رخداد این دو نوع خشکسالی پرداخته شده است تا بدینوسیله بتوان با شروع خشکسالی هواشناسی، زمان رخداد خشکسالی هیدرولوژیکی را پیش بینی نمود. این امر کمک خواهد کرد که تمهیدات لازم برای مدیریت حوضه را در صورت بروز کمبود آب از پیش فراهم نمود. برای تعیین و پیش بینی فاصله زمانی میان دو نوع خشکسالی از مدل بیلان آب SWAT و برای مطالعه موردی از حوضه آبریز فومنات (تالاب انزلی) در استان گیلان استفاده شد. تحلیل حساسیت مدل بیلان، با توجه به توانایی آن در شبیه سازی جریان دراز مدت رودخانه‌های معرف در حوضه، به روش OAT انجام گردید و نشان داد که ازمیان پارامترهای مورد استفاده در مدل SWAT، سه پارامتر شماره منحنی، آب قابل دسترس خاک و عامل جبران تبخیر در خاک به ترتیب بیشترین تاثیر را در خروجی مدل برای موضوع مورد تحقیق دارا می‌باشند. واسنجی و اعتبارسنجی SWAT با استفاده از مدل SCH انجام شد و دقت شبیه‌سازی با استفاده از شاخص‌های نش-ساتکلیف و ضریب همبستگی در دوره واسنجی به ترتیب 68/0 و 8/0 و در دوره اعتبارسنجی به‌ترتیب 65/0 و 79/0 و قابل قبول برآورد گردید. با داشتن مدل کالیبره شده بیلان، برای هر سناریوی احتمالی در خشکسالی هواشناسی وضعیت بیلان آبی حوضه و همچنین فرصت زمانی موجود برای رخداد خشکسالی هیدرولوژیکی قابل پیش بینی است. براساس نتایج بدست آمده با احتمال بیش از 70درصد تاخیر زمانی یکماهه و به همین ترتیب با احتمال بیش از 23 درصد تأخیر زمانی دو ماهه بین دو خشکسالی هواشناسی و هیدرولوژیکی وجود دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Determining and Estimating the Lag time between Meteorological and Hydrological Drought Using a Water Balance Model

نویسنده [English]

  • Fahimeh Razi 1

1 Imam Khomeini International University, Water Engineering Department

چکیده [English]

Long meteorological drought can lead to the onset of hydrological drought. In this research, the lag time between the two types of drought was investigated for determining the hydrologic drought onset after realizing the climatological drought. This is a matter to provide managers with enough time for decision making before the occurrence of water shortage in the watershed. The SWAT water balance model was used to determine and predict the lag time between the two types of drought for Foomanat (Anzali wetland) watershed in Gilan province Due to the ability to simulate the long-term flow of representative rivers in the basin. The OAT method was employed for the sensitivity analysis of the water balance model. Among the parameters used in SWAT, three parameters including curve number, available water, and the evaporation compensation factor in the soil were recognized as the most effective parameters for the results of the model. Calibration and validation of SWAT were performed using SCH model. The calculated Nash-Sutcliff and correlation coefficient in estimating runoff as well as determining and predicting the lag time between the two types of drought by SWAT were acceptable. The Nash coefficient was obtained as 0.68 and 0.8 for calibration, and 0.65 and 0.79 for validation periods, respectively. Using the calibrated model, one can predict the water balance situation and the lag time between the onset of meteorological drought and the emerging hydrological drought in the watershed for any interested meteorological drought scenarios. Based on the results, the chance of having a one -month lag time, is more than 70 percent, while the chance of a 2-month lag time in the Foomanat watershed Anzali wetland) is more than 23 percent.

کلیدواژه‌ها [English]

  • Lag time
  • Hydrological drought
  • Meteorological drought
  • SWAT
  • Anzali wetland
  1. Adeniyi, G., F.S. Bolaji, W.S. Adebayo and M.O. Daramola. 2014. Validation of SWAT model for prediction of water yield and water balance: case study of upstream catchment of Jebba Dam in Nigeria. International Journal of Civil and Environmental Engineering, 8(2): 264-270.
  2. Amini, M.A., G. Torkan, S. Eslamian, M.J. Zareian and A.A. Besalatpour. 2018. Assessment of SWAT hydrological model in catchments' water balance simulation located in semi-arid regions, case study: Zayandehrud River Basin. Journal of Water and Soil, 32(5): 849-863 (in Persian).
  3. Arnold, J.G., D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D. Harmel, A. van Griensven, M.W. Van Liew, N. Kannan and M.K. Jha. 2012. SWAT: model use, calibration, and validation. Transactions of the ASABE, 55(4): 1491-1508.
  4. Artimani, M.M., H. Zeinivand, N. Tahmasebipour and A. Haghizadah. 2017. Performance evaluation of SWAT model to determine water balance components in the Gamasiab Basin. Iraninan Journal of Rainwater Catchment Systems, 15: 51-64 (in Persian).
  5. Babaei, H., S. Araghinejhad and A. Hoorfar. 2011. Determination of lag time of meteorological and hydrological droughts in Zayandehroud Watershed. Khoshk Boom, 1(3): 1-13 (in Persian).
  6. Cibin, R., K.P. Sudheer and I. Chaubey. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Process, 24: 1133–1148.
  7. Devi, G.K., B.P. Ganasri and G.S. Dwarakish. 2015. A review on hydrological models. Aquatic Procedia, 4: 1001-1007.
  8. Eskandari Damaneh, H., G. Zehtabian, H. Khosravi and A. Azareh. 2016. Investigation and analysis of spatio-temporal relation between meteorological and hydrologic drought in Tehran Province. Geographical Data, 96: 113-120 (in Persian).
  9. Feyereisen, G.W., T.C. Strickland, D.D. Bosch and S. Sullivan. 2007. Evaluation of SWAT manual calibration and input parameter sensitivity in the little river watershed. American Society of Agricultural and Biological Engineers, 50: 843-855.
  10. Ficklin, D., Y. Luo, E. Luedeling and M. Zhang. 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology, 374(1): 16-29.
  11. Gholami, S. and M. Nasiri. 2015. Simulation of Atrak River flow using SWAT model, case study: Maraghe Tappeh Watershed, Golestan Province. Journal of Engineering and Watershed Management, 7(2): 126-135 (in Persian).
  12. Havrylenko, S., J. Bodoque, R. Srinivasan, G. Zucarelli and P. Mercuri. 2016. Assessment of the soil water content in the Pampas region using SWAT. Catena, 137: 298-309.
  13. Javadi, S., L. Akbari Nasab and A. Neshat. 2017. Determining groundwater balance parameters using SWAT and CRD infiltration method in Astaneh-Kouchesfahan Plain. Water Resources System Management, 1(2): 13-24 (in Persian).
  14. Koushki, R., M. Rahimi, M. Amiri, M. Mohammdi and J. Dastoorani. 2017. Investigation of relationship between meteorological and hydrological drought in Karkheh Watershed. Journal of Ecohydrology, 4(3): 687-698 (in Persian).
  15. Mesbahzade, T. and F. Soleimani Sardo. 2017. Investigation of hydrological drought and meteorological changes in Karkheh Watershed. Iranian Journal of Watershed Management Sciences and Engineering, 12(40): 105-115 (in Persian).
  16. Mofidipoor, N., V. Bardisheikh, M. Oonagh and A. Sadedin. 2012. Studying meteorological and hydrological drought in the Atrak Basin. Journal of Watershed Management, 3(5): 16-26 (in Persian).
  17. Narsimlu, B., A. Gosain, B. Chahar, S. Singh and P.K. Srivastava. 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Springer International Publishing Switzerland, 2: 79-95.
  18. Nash, S. and J. Sutcliffe. 1970. River flow forecasting through conceptual model. Journal of Hydrology, 10: 282-290.
  19. Pereira, D., M. Martinez, A. Almeida, A. Pruskt, F. Silva and J. Zonta. 2014. Hydrological simulation using SWAT model in headwater basin in southeast Brazil. Engineering Agricultural, 34(4): 789-799.
  20. Shawul, A., T. Alamirew and M. Dinka. 2013. Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, southeastern Ethiopia. Hydrology and Earth System Sciences, 10: 13955-13978.
  21. Vaghefi, , S. Mousavi, K. Abbaspour, R. Srinivasan and J. Arnold. 2015. Integration of hydrologic and water allocation models in basin scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional Environmental Change, 15(3): 475-484.
  22. Vakilifard, A., A. Asadi, K. Ebrahimi, A. Fakherifard and S. Darbandi. 2016. Investigation of the relationship between the occurrence of meteorological and hydrological drought in surface waters, case study: Bilardi-Dodzoun Basin. Journal of Water and Soil Science, 27(2): 1-15 (in Persian).
  23. Vilaysane, B., K. Takara, P. Luo, I. Akkharath and W. Duan. 2015. Hydrological stream flow modeling for calibration and uncertainty analysis using SWAT model in the Xedone River Basin, Lao PDR. Procedia Environmental Sciences, 28: 380-390.
  24. Viola, M., C. Mello, F. Acerbi and A. Silva. 2009. Hydrologic modeling in the Aiuruoca River Basin, Minas Gerais State. Engineering Agriculture, 13(5): 581–590.
  25. Zare Garizi, A. and A. Talebi. 2017. Water balance simulation for the Gharesou Watershed in Golestan Province using SWAT model. Journal of Water Engineering, 30: 37-50 (in Persian).