با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز، دانشکده کشاورزی، گروه علوم خاک

2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران

4 گروه خاکشناسی دانشکده کشاورزی دانشگاه تربیت مدرس

چکیده

امروزه استفاده از طیف سنجی در برآورد ویژگی‌های خاک کاربرد گسترده‌ای یافته است. هدف از این پژوهش استفاده از امواج مرئی و مادون‌قرمز نزدیک در برآورد خصوصیات خاک در مناطق مستعد تولید گرد و غبار استان خوزستان است. تعداد 142 نمونه خاک از مناطق مستعد تولید گرد و غبار مورد تجزیه و تحلیل قرار گرفت و مقدار کربنات کلسیم معادل، گچ، کربن آلی و نیتروژن کل خاک اندازه‌گیری شد. از مدل‌های رگرسیون خطی، حداقل مربعات جزئی (PLSR ) و PLSR و رگرسیون مؤلفه اصلی (PCR ) برای برآورد این خصوصیات در خاک استفاده شد. سه روش بازتاب طیف اصلی و روش‌های پیش‌پردازش مشتق اول و مشتق دوم در دو مدل رگرسیونی PCR و PLSR مورد مقایسه قرار گرفت. نتایج نشان داد که مدل PLSR در حالت استفاده از روش پیش پردازش مشتق دوم باعث کاهش نویز طیف‌های بازتابی نمونه‌های خاک گردید، برای سه پارامتر کربنات کلسیم معادل، کربن آلی و نیتروژن کل به‌ترتیب با ضرایب تعیین 95/0 و 92/0 و 81/0 بیشترین دقت برآورد را نشان داد. برای گچ بیش‌ترین دقت در حالت مشتق اول با ضریب تعیین: 87/0 بود. نتایج این مطالعه بیانگر آن است که استفاده از روش طیف‌سنجی در برآورد خصوصیات خاک در مناطق مستعد تولید گرد و غبار استان خوزستان دقت مناسبی دارد و با توجه به وسعت کانون‌های ریزگرد و سرعت عمل و ارزان‌تر بودن این روش می توان در ارزیابی خصوصیات خاک این مناطق استفاده گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating soil Properties in susceptible areas of dust production in Khuzestan province by visible and wave-near infrared spectroscopy

نویسندگان [English]

  • Mansour Chatrenour 1
  • Ahmad landi 2
  • Ahmad Farrokhian firouzi 2
  • Aliakbar Noroozi 3
  • Hosseinali Bahrami 4

1 Shahid Chamran University of Ahvaz, Iran, 2 , Faculty of Agriculture, Department of Soil Science

2 Department of soil science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Soil Conservation and Watershed Management Research Institute,Tehran, Iran

4 scoil science Dep. faculty of Agr. Tarbiat modares university, Tehran, Iran

چکیده [English]

Nowadays spectroscopy is used for estimating soil properties. The main objective of this research was to estimate some soil properties of Susceptible Areas of Dust Production using visible and near infrared. Therefore 142 soil sample of Susceptible Areas of Dust Production were Collected and analyzed. Equivalent calcium carbonate, gypsum, organic carbon and nitrogen of soil sample were measured and linear regression models of PCR and PLSR were used to estimate these properties .Three methods of reflection of the main spectra and pre-process methods of first derivative and second derivative were compared in two regression models of PCR and PLSR. The results showed that the PLSR method is more accurate than the PCR model for estimating soil properties. The PLSR model in the pre-processing second derivative with noise reduction, showed the highest accuracy for equivalent calcium carbonate, organic carbon and total nitrogen with the coefficient of determination as 0.95, 0.92 and 0.81, respectively. For gypsum, the highest accuracy in the first derivative with the coefficient of determination was 0.87. The results of this research revealed the use of spectroscopy in estimating soil properties of dust production-prone areas in Khuzestan province have an appropriate accuracy; and due to the extent of these areas and the speed of operation and cheapness of this method, it can be used to predict the amount of soil properties in these areas.

کلیدواژه‌ها [English]

  • preprocessing
  • main spectrum
  • second derivative
  • PCR
  • PLSR
  1.  

    1. Barral, M., M. Arias and J. Guerif. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil and Tillage Research, 46(3-4): 261-272.
    2. Bashour, I.I. and A.H. 2007. Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations , 128 pages.
    3. Ben-Dor, E. and A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59(2): 364-372.
    4. Ben-Dor, E., Y. Inbar and Y. 1997. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61(1): 1-15.
    5. Bilgili, A.V., H. Van Es, F. Akbas, A. Durak and W. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments, 74(2): 229-238.
    6. Camo, A. 1998. The unscrambler user manual. CAMO ASA, Norway, 47-49.
    7. Chang, C., D.A Laird, M.J. Mausbach and C.R Hurburgh. 2001. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2): 480-490.
    8. Curcio, D., G. Ciraolo, F. D’Asaro and M. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19: 494-503.
    9. Engelstaedter, S., I. Tegen and R. 2006. North African dust emissions and transport. Earth-Science Reviews, 79(1): 73-100.
    10. Farifteh, J., F. Van der Meer, C. Atzberger and E. Carranza. Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110(1): 59-78.
    11. Hassani, A., H. Bahrami, A. Noroozi and S. Oustan. Visible near infrared reflectance spectroscopy for assessment of soil properties in gypseous and calcareous soils. Journal of Watershed Engineering and Management, 6(2): 125-138 (in Persian).
    12. Heidarian, P., M. Joudaki, J. Darvishi Khatoni and R. Shahbazi. 2015. Recognized dust sourcesin Khuzestan Province. Geological Survey and Mineral Exploration of Iran, 125 pages (in Persian).
    13. Islam, K., B. Singh and A. McBratney. 2003. Simultaneous estimation of several soil properties by ultra-violet, visible and near-infrared reflectance spectroscopy. Soil Research, 41(6): 1101-1114.
    14. Janik, L.J., R.H. Merry and J. Skjemstad. 1998. Can mid infrared diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, 38(7): 681-696.
    15. Ji, W., V.I. Adamchuk, A. Biswas, N.M. Dhawale, B. Sudarsan, Y. Zhang, R.A.V. Rossel and Z. Shi. 2016. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. Biosystems Engineering, 152: 14-27.
    16. Khayamim, F., H. Khademi, B. Stenberg and J. Wetterlind. 2015. Capability of vis-NIR spectroscopy to predict selected chemical soil properties in Isfahan Province. JWSS-Isfahan University of Technology, 19(72): 81-92 (in Persian).
    17. Liu, B., J. Qu, D. Ning, Y. Gao, R. Zu and Z. An. 2014. Grain-size study of aeolian sediments found east of Kumtagh Desert. Aeolian Research, 13: 1-6.
    18. Liu, C.W., K.H. Lin and Y.M. Kuo. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3): 77-89.
    19. Mashimbye, Z., M. Cho, J. Nell, W. De Clercq, A. Van Niekerk and D. Turner. 2012. Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data, a case study of selected South African soils. Pedosphere, 22(5): 640-649.
    20. Miller, R. and D. Keeney. 1982. Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd ed., American Society of Agronomy, Soil Science Society of America, Madison, 128-198.
    21. Morgan, R.P.C. 2009. Soil erosion and conservation. Wiley-Blackwell, 316 pages.
    22. Nawar, S., H. Buddenbaum, J. Hill and J. Kozak. 2014. Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sensing, 6(11): 10813-10834.
    23. Nawar, S., H. Buddenbaum, J. Hill, J. Kozak and A.M. Mouazen. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155: 510-522.
    24. Nelson, D. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney, Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 539-579.
    25. Rossel, R.V., D. Walvoort, A. McBratney, L.J. Janik and J. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1): 59-75.
    26. Soriano-Disla, J.M., L.J. Janik, R.A. Viscarra Rossel, L.M. Macdonald and M.J. McLaughlin. 2014. The performance of visible, near and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical and biological properties. Applied Spectroscopy Reviews, 49(2): 139-186.
    27. Stenberg, B., G. Rogstrand, E. Bölenius, J. Arvidsson and J. Stafford. 2007. On-line soil NIR spectroscopy: identification and treatment of spectra influenced by variable probe distance and residue contamination. Precision Agriculture, 7: 125-131.
    28. Stoner, E.R. and M. Baumgardner. 1981. Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, 45(6): 1161-1165.
    29. Vasques, G., S. Grunwald and J. Sickman. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 146(1-2): 14-25.
    30. Vicente, L.E. and C.R. de Souza Filho. 2011. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115(8): 1824-1836.
    31. Wang, J., T. He, C. Lv, Y. Chen and W. Jian. 2010. Mapping soil organic matter based on land degradation spectral response units using Hyperion images. International Journal of Applied Earth Observation and Geoinformation, 12: 171-180.
    32. Wang, Y., X. Zhang, R. Arimoto, J. Cao and Z. Shen. 2005. Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources. Atmospheric Environment, 39(14): 2631-2642.
    33. Xuemei, L. and L. Jianshe. 2013. Measurement of soil properties using visible and short wave-near infrared spectroscopy and multivariate calibration. Measurement, 46(10): 3808-3814.
    34. Ye, B., X. Ji, H. Yang, X. Yao, C.K. Chan, S.H. Cadle, T. Chan and P.A. Mulawa. 2003. Concentration and chemical composition of PM 2.5 in Shanghai for a 1-year period. Atmospheric Environment, 37(4): 499-510.
    35. Zheng, X.J., N. Huang and Y.H. Zhou. 2003. Laboratory measurement of electrification of wind blown sands and simulation of its effect on sand saltation movement. Journal of Geophysical Research: Atmospheres, 5: 108-126.
    36. Zhu, B.Q., J.J. Yu, P. Rioual and X.Z. Ren. 2014. Particle size variation of aeolian dune deposits in the lower reaches of the Heihe River basin, China. Sedimentary Geology, 301: 54-69.
    37. Zobeck, T.M., G. Sterk, R. Funk, J.L. Rajot, J.E. Stout and R.S. Van Pelt. 2003. Measurement and data analysis methods for field scale wind erosion studies and model validation. Earth Surface Processes and Landforms, 28(11): 1163-1188.
    38. Zornoza, R., C. Guerrero, J. Mataix-Solera, K. Scow, V. Arcenegui and J. Mataix-Beneyto. 2008. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biology and Biochemistry, 40(7): 1923-1930.