با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه تحقیقات مهندسی حفاظت آب و خاک پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 دانشیار، گروه زمین‌شناسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

مقدمه
فرونشست زمین به‌عنوان یکی از مخاطرات زمین‌شناسی، تأثیرات گسترده‌ای بر زیرساخت‌ها، کشاورزی و محیط‌زیست دارد. این پدیده می‌تواند ناشی از عواملی همچون برداشت بی‌رویه آب‌های زیرزمینی، فعالیت‌های معدنی، استخراج نفت/ گاز و یا عوامل طبیعی مانند تراکم رسوبات و حرکات تکتونیکی باشد. پایش دقیق این پدیده با استفاده از تکنولوژی‌های نوین، راهکاری کلیدی برای کاهش آثار زیان‌بار آن به شمار می‌رود. روش تداخل‌سنجی راداری روزنه مصنوعی (InSAR)، به‌ویژه تکنیک پراکنده‌سازهای ماندگار (PSInSAR)، یکی از پیشرفته‌ترین روش‌ها برای پایش تغییرات سطح زمین است. این روش با دقت میلی‌متری، امکان شناسایی جابجایی‌های کوچک زمین را فراهم می‌کند و ابزار مهمی برای پایش بلندمدت فرونشست در مناطق وسیع می‌باشد. این مطالعه با هدف ارزیابی و پهنه‌بندی خطر فرونشست زمین در برخی از مهم‌ترین حوزه‌های آبخیز استان اصفهان، شامل اصفهان-برخوار، نجف‌آباد، مهیار شمالی، مهیار جنوبی و کوهپایه-سجزی، با استفاده از داده‌های صعودی، نزولی و ترکیبی (صعودی-نزولی) ماهواره Sentinel-1 و تکنیک PSInSAR انجام شده است. این پژوهش ضمن ارائه اطلاعات دقیق در مورد وسعت و شدت فرونشست، به شناسایی الگوهای مکانی و زمانی این پدیده پرداخته و نتایج آن برای سیاست‌گذاری و مدیریت خطرات فرونشست می‌تواند بسیار حائز اهمیت باشد.
 
مواد و روش‌ها
منطقه مورد مطالعه شامل حوزه‌های آبخیز گسترده‌ای است که نه‌تنها کلان‌شهر اصفهان را در بر می‌گیرد، بلکه مناطق وسیعی از زمین‌های کشاورزی و سکونتگاه‌های مهم را نیز شامل می‌شود. در این مطالعه، داده‌های راداری Sentinel-1  مربوط به دوره زمانی 1393 (2014) تا 1402 (2023) مورد استفاده قرار گرفته است. این داده‌ها شامل تصاویر صعودی و نزولی این ماهواره می‌باشد که ترکیب آن‌ها به حذف ابهامات ناشی از جهت جابجایی کمک می‌نماید. در ابتدا، پردازش اولیه داده‌ها انجام گردیده که شامل هم‌ثبت‌سازی تصاویر به‌منظور تطابق دقیق پیکسل‌ها و تولید تداخل‌نگارها برای استخراج تغییرات فاز می‌باشد. سپس شناسایی پراکنده‌سازهای ماندگار (PS) صورت گرفته است که در این مرحله، نقاطی با بازتاب پایدار رادار با استفاده از شاخص پراکندگی دامنه (ADI) و تحلیل پایداری فاز شناسایی شده‌اند. در گام بعد، تصحیح خطاهای جوی و مداری با استفاده از مدل‌های آماری و روش‌های وارون‌سازی انجام شده تا اثرات جوی و خطاهای مداری حذف شوند. سپس به توسط تحلیل سری زمانی تغییرات زمین، جابجایی در طول زمان محاسبه گردیده و داده‌ها به مختصات جغرافیایی تبدیل شده‌اند. در ادامه، داده‌های به‌دست‌آمده با داده‌های زمینی و سایر منابع مستقل مقایسه شده تا دقت و قابلیت اعتماد نتایج اعتبارسنجی شود. نهایتاً نقشه‌های پهنه‌بندی شامل نقشه‌های فرونشست تجمعی، نرخ سالیانه فرونشست و پهنه‌های خطر وقوع این پدیده تهیه شده‌اند.
 
نتایج و بحث
نتایج نشان می‌دهد که فرونشست زمین در منطقه مورد مطالعه از مقدار ناچیز تا 55 سانتی‌متر در بازه 9 ساله مورد بررسی متغیر می‌باشد. نرخ سالیانه فرونشست در مناطقی از حوضه‌های اصفهان-برخوار و مهیار جنوبی به 6 سانتی‌متر در سال رسیده است. ترکیب داده‌های صعودی و نزولی علاوه بر کمک به کاهش خطاها، امکان تفکیک جابجایی‌های عمودی و افقی زمین را نیز فراهم ساخته است. بیشترین فرونشست تجمعی در مناطق شهری و کشاورزی حوضه اصفهان-برخوار و همچنین در محدوده رسوبات رسی در حوضه مهیار جنوبی مشاهده می‌شود. پهنه‌بندی خطر نشان می‌دهد که حوضه‌های اصفهان-برخوار و مهیار جنوبی دارای بیشترین مساحت پهنه‌های با خطر بسیار زیاد هستند. در سایر حوضه‌ها، مناطق با خطر متوسط و کم غالب هستند. نقشه‌های پهنه‌بندی، ارتباط مستقیمی را بین بیشترین میزان فرونشست و کاربری اراضی (مانند مناطق شهری و کشاورزی) و همچنین ویژگی‌های زمین‌شناسی (رسوبات رسی و کلوت‌ها) نشان می‌دهند.
 
نتیجه‌گیری
استفاده از تکنیک PSInSAR برای پایش فرونشست زمین در استان اصفهان، اطلاعات ارزشمندی درباره الگوها و روند این پدیده ارائه نموده است. نتایج این مطالعه نشان می‌دهد که فرونشست در حوضه‌های اصفهان-برخوار و مهیار جنوبی نه تنها شدید است، بلکه روند مداومی دارد. این موضوع نیازمند برنامه‌ریزی فوری و اجرای اقدامات مدیریتی برای کاهش خطرات فرونشست است. ارتباط بین فرونشست و عوامل انسان‌زاد مانند برداشت بی‌رویه آب‌های زیرزمینی و ویژگی‌های زمین‌شناسی بر ضرورت برنامه‌ریزی یکپارچه برای مدیریت پایدار منابع آب و استفاده از زمین تأکید دارد. نقشه‌های پهنه‌بندی خطر ارائه‌شده در این مطالعه، ابزار ارزشمندی برای سیاست‌گذاران و برنامه‌ریزان شهری به‌منظور مدیریت بهینه ریسک‌های ناشی از فرونشست زمین است. پژوهش‌های آینده باید بر پایش مداوم و توسعه مدل‌های پیش‌بینی فرونشست برای مقابله مؤثر با این پدیده متمرکز شوند.
 

کلیدواژه‌ها

عنوان مقاله [English]

Land subsidence risk assessment and zoning in the watersheds of Isfahan Province using Persistent Scatterer InSAR (PSInSAR)

نویسندگان [English]

  • Kourosh Shirani 1
  • Mehrdad Pasandi 2

1 Associate Professor, Department of Soil and Water Management Engineering, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Associate Professor, Department of Geology, University of Isfahan, Isfahan, Iran

چکیده [English]

Introduction
Land subsidence, a significant geological hazard, poses widespread risks to infrastructure, agriculture, and the environment. This phenomenon may result from factors such as excessive groundwater extraction, mining activities, oil/gas extraction, or natural causes like sediment compaction and tectonic movements. Accurate monitoring of land subsidence using advanced technologies is essential for mitigating its adverse effects. Interferometric Synthetic Aperture Radar (InSAR), particularly the Persistent Scatterer InSAR (PSInSAR) technique, is one of the most advanced methods for monitoring ground deformation. With millimeter-level precision, it enables the detection of subtle land movements and serves as a critical tool for long-term subsidence monitoring over large areas. In this study, Sentinel-1 satellite data (ascending, descending, and combined modes) and the PSInSAR technique were utilized to assess and map land subsidence risk in major watersheds of Isfahan Province, including Isfahan-Borkhar, Najafabad, Northern Mahyar, Southern Mahyar, and Kuhpayeh-Sejzi. By providing detailed insights into the extent and severity of subsidence, this research identifies spatial and temporal patterns, offering crucial information for policymaking and risk management.
 
Materials and methods
The study area encompasses extensive watersheds that include the metropolis of Isfahan, as well as significant agricultural lands and residential areas. The Sentinel-1 radar data spanning from 2014 to 2023 were used, including ascending and descending imagery, to resolve displacement ambiguities caused by the directional nature of movement. Initial data processing involved co-registration of radar images to align pixels accurately and generate interferograms for phase change extraction. Persistent scatterers (PS) were identified using the Amplitude Dispersion Index (ADI) and phase stability analysis. Atmospheric and orbital errors were corrected using statistical models and inversion techniques to eliminate biases. Temporal analysis of ground displacement was conducted to calculate deformation trends, with data georeferenced for spatial interpretation. Validation was carried out by comparing results with ground-based data and independent sources. Final outputs included cumulative subsidence maps, annual subsidence rates, and risk zoning maps highlighting areas prone to land subsidence.
 
Results and discussion
The findings reveal that subsidence in the study area ranged from negligible levels to 55 cm over the nine-year observation period. Annual subsidence rates in parts of the Isfahan-Borkhar and Southern Mahyar watersheds reached 60 mm per year. Combining ascending and descending data improved accuracy and enabled the separation of vertical and east-west horizontal displacement components. The highest cumulative subsidence was observed in urban and agricultural zones of the Isfahan-Borkhar watershed and in clayey sediment areas within the Southern Mahyar watershed. Risk zoning maps indicate that the Isfahan-Borkhar and Southern Mahyar watersheds have the largest areas classified as high-risk. The other watersheds predominantly exhibit moderate to low-risk zones. The maps demonstrate a strong correlation between severe subsidence and land use (urban and agricultural areas) as well as geological features (clayey sediments and alluvial deposits).
 
Conclusions
The application of PSInSAR for monitoring land subsidence in Isfahan Province provides valuable insights into the patterns and trends of this phenomenon. The results highlight severe and ongoing subsidence in the Isfahan-Borkhar and Southern Mahyar watersheds, necessitating urgent planning and management measures to mitigate the associated risks. The link between subsidence and anthropogenic factors, such as excessive groundwater extraction, and geological characteristics underscores the need for integrated planning for sustainable water resource management and land use. The risk zoning maps presented in this study serve as essential tools for policymakers and urban planners to optimize risk management strategies. Future research should focus on continuous monitoring and the development of predictive subsidence models to address this issue effectively.

کلیدواژه‌ها [English]

  • Ascending and descending data
  • PSInSAR interferometry
  • Sentinel-1
  • Land subsidence
Abo, H., Osawa, T., 2024. Land Subsidence Monitoring of PSInSAR Analysis Using Sentinel-1 SAR Data from 2017 to 2022 in Chiba Prefecture, Japan. In IGARSS 2024-2024 IEEE Int. Geosci. Remote Sens. Symp., 10752-10755.
Agarwal, V., Kumar, A., Gee, D., Grebby, S., Gomes, R.L., Marsh, S., 2021. Comparative study of groundwater-induced subsidence for London and Delhi using PSInSAR. Remote Sens. 13(23), 4741.
Aslan, G., Cakir, Z., Lasserre, C., Renard, F., 2019. Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sens.11(1), 85.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40(11), 2375-2383.
Bert, M.K., 2006. Radar interferometry: persistent scatterers technique. Springer, The Netherlands.
Bokhari, R., Shu, H., Tariq, A., Al-Ansari, N., Guluzade, R., Chen, T., Jamil, A., Aslam, M., 2023. Land subsidence analysis using synthetic aperture radar data. Heliyon, 9(3).
Chitsazan, M., Rahmani, G., Ghafoury, H., 2022. Land subsidence susceptibility mapping using PWRSTFAL framework and analytic hierarchy process: fuzzy method (case study: Damaneh-Daran Plain in the west of Isfahan Province, Iran). Environ. Monit. Assess. 194(3), 192.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Crippa, B., 2016. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 115, 78-89.
Davoodijam, M., Motagh, M., Momeni, M., 2015. Land Subsidence in Mahyar Plain, Central Iran, Investigated Using Envisat SAR Data. In: Kutterer, H., Seitz, F., Alkhatib, H., Schmidt, M. (eds) The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS'11). International Association of Geodesy Symposia, vol 140. Springer.
Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39(1), 8-20.
Galloway, D.L., Jones, D.R., Ingebritsen, S.E. eds., 1999. Land subsidence in the United States (Vol. 1182). Geological Survey (USGS).
Galloway, D.L., Burbey, T.J., 2011. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 19(8), 1459.
Gambolati, G., Teatini, P., 2023. Land Subsidence and Its Mitigation. Groundwater Project.
Goorabi, A., Karimi, M., Yamani, M., Perissin, D., 2020. Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations. J. Arid Environ. 181, 104238.
Hanssen, R.F., 2001. Radar interferometry: data interpretation and error analysis. Springer.
Hasan, M.F., Smith, R., Vajedian, S., Pommerenke, R., Majumdar, S., 2023. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 14(1), 6180.
Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R.M., Carreón-Freyre, D., Lambert, J., Teatini, P. and Cabral-Cano, E., 2021. Mapping the global threat of land subsidence. Science 371(6524), 34-36.
Hooper, A., Zebker, H., Segall, P., Kampes, B., 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 31(23).
Hooper, A., 2008. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 35(16).
Hu, L., Tang, X., Tomás, R., Li, T., Zhang, X., Li, Z., Yao, J., Lu, J., 2024. Monitoring surface deformation dynamics in the mining subsidence area using LT-1 InSAR interferometry: A case study of Datong, China. Int. J. Appl. Earth Obs. Geoinf. 131, 103936.
Karanam, V.; Motagh, M.; Garg, S.; Jain, K., 2021. Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 102, 102439.
Khorrami, M.; Abrishami, S.; Maghsoudi, Y.; Alizadeh, B.; Perissin, D., 2020. Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Sci. Rep. 10, 1-16.
Lanari, R., Mora, O., Manunta, M., Mallorquí, J.J., Berardino, P., Sansosti, E., 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 42(7), 1377-1386.
Le, H.M., Van Tran, A., 2022. Analyzing of land subsidence by Sentinel-1 time-series images using PSInSAR method: A case study of Thai Nguyen, Vietnam. Journal of Mining and Earth Sciences (JMES) 63(6), 92-103.
Lenardón Sánchez, M., Farías, C.A., Cigna, F., 2024. Multi-Decadal Land Subsidence Risk Assessment at Major Italian Cities by Integrating PSInSAR with Urban Vulnerability. Land 13(12), 2103.
Li, Z., Fielding, E.J., Cross, P., Preusker, R., 2009. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 30(13), 3343-3363.
Li, Z., Cao, Y., Wei, J., Duan, M., Wu, L., Hou, J., Zhu, J. 2019. Time-series InSAR ground deformation monitoring:Atmospheric delay modeling and estimating. Earth-Sci. Rev. 192, 258-284.
Mason, P.J., Ghail, R.C., Bischoff, C., Skipper, J.A., Winter, M.G., Smith, D.M., Eldred, P.J.L., Toll, D.G., 2015. Detecting and monitoring small-scale discrete ground movements across London, using Persistent Scatterer InSAR (PSI). In Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering. Institution of Civil Engineers, Edinburgh.
Mora, O., Mallorqui, J.J., Broquetas, A., 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 41(10), 2243-2253.
Pepe, A., Lanari, R., 2006. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 44(9), 2374-2383.
Rafyi, M., Rezaei, K., Shirani, K., & Nasrin, M., 2019. Estimation of land subsidence rate using InSAR technique and analysis of the effective parameters in Mahyar Plain. Watershed Engineering and Management (IJWMSE), 11(3), 661-675.
Salehi, R., Ghafoori, M., Lashkaripour, G.R., Dehghani, M., 2013. Evaluation of land subsidence in southern Mahyar Plain using radar interferometry. Irrigation and Water Engineering (IWE) 3(3), 47-57.
Shirani, K., Pasandi, M., 2023. Assessment of the ASAR and PALSAR Sensors Applicability for Detecting and Monitoring of Landslides in the Zagros Area (Iran) Through Differential Synthetic Aperture Radar Interferometry (DInSAR). Geotech. Geol. Eng. 41(2), 611-629.
Shirani, K., Pasandi, M., 2020. Landslide Monitoring and the Inventory Map Validation by Ensemble DInSAR Processing of ASAR and PALSAR Images (Case Study: Doab-Samsami Basin in Chaharmahal and Bakhtiari Province, Iran). Geotech. Geol. Eng. 39(2), 1201-1222.
Shirani, K., Pasandi, M., 2019. Detecting and monitoring of landslides using persistent scattering synthetic aperture radar interferometry. Environ. Earth Sci. 78(42), 1-24.
Shirani, K., Pasandi, M., Ebrahimi, B., 2021. Assessment of Land Subsidence in the Najafabad Plain Using the Differential Synthetic Aperture Radar Interferometry (DInSAR) Technique. Journal of Water and Soil Science (JWSS) 25(1), 105-127.
Shirani, K., Heydari, F., & Arabameri, A., 2017. Comparison of artificial neural network and multivariate regression methods in landslide hazard zonation, case study: Vanak Basin, Isfahan province. Watershed Engineering and Management (IJWMSE) 9(4), 451-464.
Shirani, K., Seif, A., Sharifikia, M., 2014. ASAR and PALSAR sensors assessment for landslide detection, ‎monitoring using differential interferometry in Zagros Mountains. Watershed Engineering and Management (IJWMSE) 6(3), 288-301.
Sorkhabi, O.M., Nejad, A.S., Khajehzadeh, M., 2022. Evaluation of Isfahan City subsidence rate using InSAR and artificial intelligence. KSCE J. Civ. Eng. 26(6), 2901-2908.
Souza, W.D.O., de Moura Reis, L.G., da Silva Pereira Cabral, J.J., Ruiz-Armenteros, A.M., Quental Coutinho, R., da Penha Pacheco, A., Ramos Aragão Junior, W., 2024. Analysis of Urbanization-Induced Land Subsidence in the City of Recife (Brazil) Using Persistent Scatterer SAR Interferometry. Remote Sens. 16(14), 2592.
Ulma, T., Anjasmara, I.M., Hayati, N., 2021. Atmospheric phase delay correction of PS-InSAR to Monitor Land Subsidence in Surabaya. In IOP Conference Series: Earth Environ. Sci. 936, 012033.
Wang, Q., Yu, W., Xu, B., Wei, G., 2019. Assessing the use of GACOS products for SBAS-INSAR deformation monitoring: A case in Southern California. Sensors19(18), 3894.
Wegmuller, U.R.S., Werner, C.L., 1995. SAR interferometric signatures of forest. IEEE Trans. Geosci. Remote Sens. 33(5), 1153-1161.
Wright, T.J., Parsons, B.E., Lu, Z., 2004. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 31(1).
Zhou, H., Wang, Y., Yan, S., Li, Y., Liu, X. and Zhang, F., 2018. Monitoring of recent ground surface subsidence in the Cangzhou region by the use of the InSAR time-series technique with multi-orbit Sentinel-1 TOPS imagery. Int. J. Remote Sens. 39(22), 8113-8128.