با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشیار پژوهشکده حفاظت خاک وآبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

مقدمه
شبیه‌سازی رسوب معلق در سیستم‌های هیدرولوژیکی به‌دلیل پیچیدگی‌ها و عدم قطعیت‌های ذاتی، همواره چالش‌برانگیز بوده است. این مسأله موجب شده تا استفاده از مدل‌های هوشمند مانند شبکه‌های عصبی مصنوعی به‌عنوان راهکاری مناسب برای پیش‌بینی بار رسوب معلق مطرح شود. به همین دلیل، استفاده از مدل‌های هوشمند نظیر شبکه‌های عصبی مصنوعی (ANN) در این زمینه گسترش یافته است. با این حال، تعیین ساختار بهینه شبکه (شامل تعداد نورون‌ها، لایه‌ها، وزن‌ها و بایاس‌ها) معمولاً به روش آزمون و خطا انجام می‌شود که هم زمان‌بر و هم ناکارآمد است. در این پژوهش، به‌منظور شبیه‌سازی بار رسوب معلق روزانه در حوزه آبخیز سراب قره‌سو (رودخانه‌های قوری‌چای و هیرچای) واقع در استان اردبیل، از شبکه عصبی پرسپترون چندلایه بهره گرفته شد.
 
مواد و روش‌ها
در این پژوهش، به‌منظور شبیه‌سازی بار رسوب معلق روزانه در حوزه‌ آبخیز سراب قره‌سو (رودخانه‌های قوری‌چای و هیرچای) در استان اردبیل، از شبکه عصبی مصنوعی پرسپترون چندلایه بهره گرفته شد. آموزش مدل‌های شبکه عصبی علاوه بر روش متداول پس‌انتشار خطا، با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات (PSO) برای بهینه‌سازی وزن‌ها و بایاس‌های نورون‌ها انجام شد. همچنین به‌منظور افزایش قدرت تعمیم‌دهی مدل‌ها، از خوشه‌بندی نگاشت خودسازمان‌ده (SOM)  استفاده شد. برای بهینه‌سازی وزن‌ها و بایاس‌های شبکه، علاوه بر روش پس‌انتشار خطا، الگوریتم بهینه‌سازی ازدحام ذرات (PSO) نیز به کار رفت. همچنین جهت افزایش قدرت تعمیم مدل‌ها، از خوشه‌بندی نگاشت خودسازمان‌ده (SOM)  استفاده شد. استفاده از الگوریتم‌های تکاملی نظیر PSO در آموزش شبکه‌های عصبی، راهکاری مؤثر برای بهبود دقت مدل‌های هوشمند و به‌خصوص در شبیه‌سازی رسوب معلق رودخانه‌ها و کاربردهای منابع آبی و سازه‌های آبخیزداری است.
 
نتایج و بحث
با استفاده از خوشه‌بندی SOM و شاخص دیویس-بولدین، تعداد بهینه خوشه‌ها برای ایستگاه کوزه توپراقی 12 و برای ایستگاه هیرچای 15 تعیین شد. تحلیل آماری و آزمون KS نشان داد داده‌ها در مجموعه‌های آموزش، اعتبارسنجی و آزمون، از توزیع مشابهی برخوردارند که باعث افزایش قدرت تعمیم‌دهی مدل‌ها می‌شود.آموزش مدل‌های شبکه عصبی با الگوریتم PSO نسبت به پس‌انتشار خطا، عملکرد بهتری داشت و خطاهای پیش‌بینی کاهش یافت. مدل‌های  ANN-PSO-Sig  و ANN-PSO-Tan بهترین عملکرد را در ایستگاه‌های کوزه توپراقی و هیرچای به‌ترتیب داشتند. بررسی بایاس مدل‌ها نیز نشان داد مدل‌های آموزش دیده با PSO خطای کمتری در برآورد کل رسوب دارند. به‌طورکلی نتایج نشان داد، آموزش شبکه‌های عصبی با الگوریتم PSO عملکرد بهتری نسبت به روش آموزش صرف با پس‌انتشار خطا دارد. در ایستگاه کوزه توپراقی، مدل هیبرید شبکه عصبی و PSO با تابع فعال‌سازی سیگموئیدی (ANN-PSO-Sig) و در ایستگاه هیر-هیرچای توپراقی مدل مشابه با تابع فعال‌سازی تانژانت هیپربولیک (ANN-PSO-Tan) به‌ترتیب با بایاس‌های 25.5 و 2.19- درصد و شاخص RMSE برابر با 86.28 و 89.2 تن در روز به‌عنوان مدل‌های بهینه انتخاب شدند. این نتایج، نشان‌دهنده بهبود دقت پیش‌بینی بار رسوب معلق با استفاده از الگوریتم PSO در آموزش شبکه عصبی است.
 
نتیجه‌گیری
استفاده از الگوریتم فراابتکاری PSO در آموزش مدل‌های شبکه عصبی، عملکرد آنها را در شبیه‌سازی بار رسوب معلق بهبود بخشیده است. این روش نسبت به الگوریتم‌های مبتنی بر گرادیان خطا برتری دارد و می‌تواند بهینه‌سازی وزن‌ها را با دقت بالاتری انجام دهد. نتایج نشان داد که دقت برآورد شاخص بایاس در مدل‌های آموزش‌دیده با  PSOبهتر است که این امر در طراحی سازه‌های آبی و مدیریت منابع آب اهمیت زیادی دارد. همچنین خوشه‌بندی داده‌ها با الگوریتمSOM  باعث انتخاب مجموعه داده‌های همگن و نماینده برای آموزش مدل‌ها شده است که به افزایش قابلیت تعمیم مدل‌ها کمک کرده است. به‌طور کلی، با توجه به پیچیدگی‌های سیستم‌های هیدرولوژیکی و عدم قطعیت‌های موجود، به کارگیری مدل‌های هوشمند همراه با الگوریتم‌های بهینه‌سازی تکاملی مانند PSO راهکاری مؤثر در شبیه‌سازی و پایش بار رسوب معلق است. نتایج حاصل می‌تواند در برنامه‌ریزی و اجرای اقدامات سازه‌ای آبخیزداری و مدیریت منابع آبی کاربرد داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluating of the efficiency of hybrid artificial neural network models and Particle Swarm Optimization (PSO) algorithm in estimating suspended sediment, a case study of Kozehtopraghi and Hir chai hydrometric stations in Ardabil Province

نویسندگان [English]

  • Seyed Ahmad Hosseini
  • Ahmad Tabatabaei

Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

چکیده [English]

Introduction
Simulating suspended sediment in hydrological systems has always been challenging due to inherent complexities and uncertainties. This issue has led to the use of intelligent models such as Artificial Neural Networks (ANNs) as a suitable approach for predicting suspended sediment load. Therefore, the use of  intelligent models like ANNs has expanded in this field. However, determining the optimal network structure (including the number of neurons, layers, weights, and biases) is usually done through trial and error, which is both time-consuming and inefficient. In this study, a multilayer perceptron neural network was used to simulate the daily suspended sediment load in the Qarasu Sarab watershed (Quri Chay and Hir Chai rivers) located in Ardabil province, Iran.
 
Materials and methods
In this research, an Artificial Neural Network (ANN) of the Multilayer Perceptron (MLP) type was utilized to simulate the daily suspended sediment load in the Sarab Qareh Su watershed (including the Quri Chay and Hir Chay rivers) in Ardabil province. The neural network models were trained not only whit the conventional backpropagation algorithm but also using the Particle Swarm Optimization (PSO) algorithm to optimize the weights and biases of the neurons. Furthermore, to increase the models' generalization capability, a Self-Organizing Map (SOM) clustering was employed. In addition to the backpropagation algorithm, the Particle Swarm Optimization (PSO) algorithm was also employed to optimize the network weights and biases. Furthermore, to enhance the model's generalization power, SOM clustering was used. The use of evolutionary algorithms such as PSO in training neural networks is an effective approach to improve the accuracy of intelligent models, especially in simulating river suspended sediment and applications related to water resources and watershed management structures.
 
Results and discussion
Using SOM clustering and the Davies-Bouldin index, the optimal number of clusters was determined as 12 for Koozeh Toupraqi station and 15 for Hir Chai station. Statistical analysis and the Kolmogorov-Smirnov (KS) test showed that data distributions across training, validation, and testing sets were similar, which enhances the generalization capability of the models. Training the neural network models with PSO yielded better performance and lower prediction errors compared to backpropagation. The ANN-PSO-Sig and ANN-PSO-Tan models achieved the best results at Koozeh Toupraqi and Hir Chai stations, respectively. Bias analysis further confirmed that PSO-trained models had lower errors in total sediment load estimation. Overall, results showed that PSO-based training outperforms pure backpropagation training. At Koozeh Toupraqi station, the hybrid ANN-PSO model with sigmoid activation function (ANN-PSO-Sig), and at Hir-Hirchai Topraghi station, the hybrid model with hyperbolic tangent activation function (ANN-PSO-Tan) were selected as optimal models, showing biases of +5.25% and -19.2% and RMSE values of 86.28 and 89.2 tons per day, respectively. These findings demonstrate the improvement in suspended sediment load prediction accuracy by using PSO in neural network training.
 
Conclusion
The use of the PSO metaheuristic algorithm in training neural network models improved their performance in simulating suspended sediment load. This method outperformed gradient-based error algorithms and provided more accurate weight optimization. The improved bias accuracy in PSO-trained models is crucial for designing hydraulic structures and water resource management. Furthermore, SOM clustering helped select homogeneous and representative datasets for model training, enhancing model generalizability. Overall, considering the complexities and uncertainties in hydrological systems, employing intelligent models combined with evolutionary optimization algorithms like PSO is an effective approach for simulating and monitoring suspended sediment loads. The obtained results can be applied in planning and implementing watershed engineering measures and water resource management.


کلیدواژه‌ها [English]

  • Artificial neural network
  • Clustering
  • Self-organizing map
  • Sarab Qarasu
  • Suspended load
Alizamir, M., Sobhanardakani, S., 2018. An Artificial Neural Network - Particle Swarm Optimization (ANN- PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur J. Health Sci. 10(2), e67544. doi: 10.5812/jjhs.67544.
Alpa, M., Cigizoglu H.K., 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ. Model. Software 22(1), 2-13.
Aytek, A., Kisi, O., 2008. A genetic programming approach to suspended sediment modeling. J. Hydrol. 351(3-4), 288–298.
Chiang, J.L., Tsai, K.J., Chen, Y.R., Lee, M.H., Sun, J.W., 2014. Suspended sediment load prediction using support vector machines in the Goodwin Creek experimental watershed. In EGU General Assembly Conference Abstracts, 16, 5285.
Cobaner, M., Unal, B., Kisi, O., 2009. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol. 367(1-2), 52-61.
Ebrahimi, H., Jabbari, E., Ghasemi, M., 2013. Application of honey-bees mating optimizationalgorithm on estimation of suspended sediment concentration. World Appli. Sci. J. 22(11), 1630-1638.
Guo, W., Wang, H., 2010. August PSO optimizing neural network for the Yangtze river sediment entering estuary prediction. In 2010 6th International Conference on Natural Computation, 4, 1769-1772 pages.
Guven, A., Kişi, O., 2011. Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resour. Manage. 25(2), 691-704.
Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Network. 2(5), 359-366.
Kisi, O., Fedakar, H.I., 2014. Modeling of suspended sediment concentration carried in natural streams using fuzzy genetic approach. Computational Intelligence Techniques in Earth and Environmental Sciences, Springer Netherlands, 175-196.
Kohonen, T., 1998. The self-organizing map. Neurocomput. 21(1), 1-6.
Kuok, K.K., Harun, S., Shamsuddin, S.M., 2010. Particle swarm optimization feedforward neural network for modeling runoff. Int. J. Environ. Sci. Technol. 7, 67-78.
Li, X., Nour, M.H., Smith, D.W., Prepasc, A.A., 2010. Neural networks modeling of nitrogen export: model development and application to unmonitored boreal forest watersheds. Environ. Technol. 31(5), 495-510.
May, R.J., Maier, H.R., Dandy, G.C., 2010. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Network. 23(2), 283-294.
Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M., Nourani, V., 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ. 407(17), 4916-4927.
Shah Hosseini, H., Mousavi Mirkalai, S.M.R., Molajafari, M., 2018. Evolutionary algorithms; Fundamentals, applications and implementation. Publications of the University of Science and Technology. 590 pages.
Tabatabaei, M., Salehpour Jam, A., 2017. Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network. Caspian J. Environ. Sci. 15(4), 387-401.
Tayfur, G., 2012. Soft computing in water resources engineering-artifical neural networks, fuzzy logic and genetic algorithms. WIT Press, Southampton, England, UK, 267 pages.
Ulke, A., Tayfur, G., Ozkul, S., 2009. Predicting suspended sediment loads and missing data for Gediz River, Turkey. J. Hydrol. Engin. 14(9), 954-965.
Yarkiani, A., 2019. Intelligent systems (volumes 1 and 2). Publication of Pouyesh Andisheh. 438 pages.
Zhua, Y.M., Lua, X.X., Zhoub, Y., 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphol. 84(1-2), 111–125.
Zounemat-Kermani, M., Kişi, O., Adamowski, J., Ramezani-Charmahineh, A., 2016. Evaluation of data driven models for river suspended sediment concentration modeling. J. Hydrol. 16(2), pages 1-40.