Alexander, E.B., 1986. Rates of soil formation from bedrock or consolidated sediments. Phys. Geograph. 6(1), 26-42.
Alexander, E.B., 1988a. Rates of soil formation: implications for soil loss tolerance. Soil Sci. 145(1), 37-45.
Alexander, E.B., 1988b. Strategies for determining soil loss tolerance. Environ. Manage. 12(6), 791-796.
Anderson, S.P., 2005. Glaciers show direct linkage between erosion rate and chemical weathering fluxes. Geomorphol. 67, 147-157.
Arabkhedri, M., Shadfar, S., Sokouti Oskouei, R., 2016. Improving the estimates of water erosion and determining soil loss tolerance for Iran tolerance for Iran. Soil Conservation and Watershed Management Research Institute. Code: 2-29-29-90025 (in Persian).
Arriaga, F.J., Lowery, B., 2003. Corn production on an eroded soil: effects of total rainfall and soil water storage. Soil Till. Res. 71, 87-93.
Bakker, M.M., Govers, G., Jones, R., Rounsevell, M., 2005. The effect of soil erosion on agricultural productivity. Geophysi. Res. Abstract. 7, 695.
Bazzoffi, B., 2009. Soil erosion tolerance and water runoff control: minimum environmental standards. Reg. Environ. Change. 9, 169-179.
Bennett, H.H., 1939. Soil conservation. McGraw-Hill Book Co., Inc, New York, 93-124.
Bennett, S.J., Rhoton, F.E., 2016. Field and laboratory methods for measuring soil erosion. USDA Agricultural Research Service.
Bertol, I., Almeida, J.A., 2000. Tolerância de perda de solo por erosão para os principais solos do Estado de Santa Catarina. Revista Brasileira de Ciência do Solo, 24(3), 657-668.
Bhattacharyya, P., V.K. Bhatt, D. Mandal, 2008. Soil loss tolerance limits for planning of soil conservation measures in Shivalik–Himalayan region of India. Catena 73, 117-124.
Bierman, P.R., Steig, E.J., 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf. Proces. Landform 21, 125-139.
Biggelaar, C.D., Lal, R., Wiebe, K., Eswaran, H., Breneman, V., Reich, P., 2003. The global impact of soil erosion on productivity I: absolute and relative erosion-induced yield losses. Advanc. Agronom. 81, 148.
Blanco-Canqui, H., Lal, R., 2008. Principles of soil conservation and management. Springer Dordrecht.
Boardman, J., Poesen, J., 2006. Soil erosion in Europe: major processes, causes and consequences. Soil Erosion in Europe, 477-487.
Bouchard, M., Jolicoeur, S., 2000. Chemical weathering studies in relation to geomorphological research in southeastern Canada. Geomorphol. 32, 213-238.
Browning, G.M., Parish, G.L., Glass, J., 1947. A method for determining the use and limitation of rotation and conservation practices in the control of soil erosion in Iowa. J. Ameri. Soci. Agron. 39, 65-73. Cook, K., 1982. Soil loss: a question of values. J.Soil Water Conserv. 37 (2), 89-92.
Carollo, F.G., Di Stefano, C., Nicosia, A., Palmeri, V., Pampalone, V., Ferro, V., 2023. A new strategy to assure compliance with soil loss tolerance at a regional scale. Catena 223, 106945.
Cockburn, H.A.P., Summerfield, M.A., 2004. Geomorphological applications of cosmogenic isotope analysis. Prog. Physi. Geograph. 28, 1-42.
Darvill, C.M., 2013. Cosmogenic nuclide analysis. Geomorphological Techniques.
Dash, S., Sahoo, B., Raghuwanshi, N., 2021. How reliable are the evapotranspiration estimates by soil and water assessment tool (SWAT) and variable infiltration capacity (VIC) models for catchment-scale drought assessment and irrigation planning? J. Hydrol. 592, 125838.
Di Stefano, C., Nicosia, A., Pampalone, V., Ferro, V., 2023. Soil loss tolerance in the context of the European Green Deal. Heliyon 9, e12869.
Dietrich, W.E., Reiss, R., Hsu, M.-L., Montgomery, D.R., 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol. Process. 9, 383-400.
Duan X., Shi X., Li, Y., Rong, L., Fen, D., 2017. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agron. Sustain. Dev. 37, 2.
Duan, X., Xie, Y., Feng, Y.J., Yin, S.Q., 2009. Study on the method of soil productivity assessment in black soil region of northeast China. Agric. Sci. China 8, 472-481.
Duan, X., Xie, Y., Liu, B., Liu, G., Feng, Y., GAO, X., 2012. Soil loss tolerance in the black soil region of Northeast China. J. Geogr. Sci. 22(4), 737-751.
Earth, T.F.W., 1961. Abundance of the elements, areal averages, and geochemical cycles. Geochim. Cosmochim. Acta 23, 1-8.
Fenton, T.E., Kazemi, M., Lauterbach-Barrett, M.A., 2005. Erosional impact on organic matter content and productivity of selected Iowa soils. Soil Till. Res. 81, 163-171.
Fulajtár, E.,
Mabit, L.,
Renschler, C., Amelialeezhi, Y.I., 2019. Use of 137Cs for soil erosion assessment. Environ. Sci.
Gabet, E.J., Mudd, S.M., 2010. Bedrock erosion by root fracture and tree throw: A coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophysic. Res. (Earth Surface), 115, F04005
Galindo, I.C.L., Margolis, E., 1989. Tolerância de perdas por erosão para solos do estado de Pernambuco. Revista Brasileira de Ciência do Solo 13, 95-100.
Gantzer, C.J., Anderson, S.H., Thompson, A.L., Brown, J.R., 1990. Estimating soil erosion after 100 years of cropping on Sanborn field. J. Soil Water Conserv. 45(6), 641-644.
Ghafari, H., Gorji, M., Arabkhedri, M., Roshani, G.A., Heidaria, A., Akhavand, S., 2017b. Identification and prioritization of critical erosion areas based on onsite and offsite effect. Catena 156, 1-9.
Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Review. 20, 1475-1560.
Granger, D.E., Kirchner, J.W., Finkel, R., 1996. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J. Geol. 104, 249-257.
Green, E.G., Dietrich, W.E., Banfield, J.F., 2006. Quantification of chemical weathering rates across an actively eroding hillslope. Earth Planet. Sci. Letter. 242, 155-169.
Guo, Y., Zheng, H., Wu, T., Wu, J., Robinson, B.E., 2020. A review of spatial targeting methods of payment for ecosystem services. Geogr. Sustainab. 1(2), 132-140.
Hancock, G.R., Wells, T., Martinez, C., Dever C., 2015. Soil erosion and tolerable soil loss: insights into erosion rates for a well-managed grassland catchment. Geoderma 237-238, 256-265.
Hartemink, A.E., Bockheim, J.G., 2013. Soil genesis and classification. Catena 104, 251-256.
Heimsath, A.M., Chappell, J., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., 2002. Late quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quat. Int. 83-85, 169.
Heimsath, A.M., Chappell, J., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., 2002. Late quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quat. Int. 83-85, 169-185.
Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., 1997. The soil production function and landscape equilibrium. Nature 388, 358-361.
Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., 1999. Cosmogenic nuclides, topography, and the spatial variation of soil depth. Geomorphol. 27, 151-172.
Heimsath, A.M., Dietrich,W.E., Nishiizumik, K., Finkel, R.C., 2001. Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclide in the Oregon coast range. Earth Surface Process. Landf. 26, 531-552.
Heimsath, A.M., Fink, D., Hancock, G.R., 2009. The ‘humped’ soil produc- tion function: eroding Arnhem Land, Australia. Earth Surf Process Landf. 34, 1674-1684.
Huang, L.-M., Zhang, G.L., Yang, J.-L., 2013. Weathering and soil formation rates based on geo chemical mass balance in a small forested watersheds under acid precipitation in subtropical China. Catena 105, 11-20.
Hudson, N., 1986. Soil conservation. BT Batsford Ltd, London.
Humphreys, G.S., Wilkinson, M.T., 2007. The soil production function: a brief history and its rediscovery. Geoderma 139, 73-78.
Islam, K., Yokoi, R., Pastor, A.V., Motoshita, M., 2023. Balancing water use and nutrition for crop production in a highly dense population – Bangladesh.
Sustain. Produc. Consump. 43, 389-399.
Johnson, L.C., 1987. Soil loss tolerance: fact or myth. J. Soil Water Conserv. 42(3), 155-160.
Johnson, L.C., 2005. Soil loss tolerance: fact or myth [2]. J. Soil Water Conserv. 60(3), 52.
Kapur, K.C., Lamberson, L.R., 2001. Reliability in engineering design.Wiley, New York, 10. 1997.
Kliment'ev, A.I., Tikhonov, V.E., 2001. Ecohydrological analysis of soil loss tolerance in agrolandscapes. Soil Erosion 34 (6), 673-682.
Kuznetsov, M.S., Abdulkhanova, D.R., 2013. Soil loss tolerance in the central chernozemic region of the european part of Russia. Eurasian Soil Sci. 46(7), 802-809.
Lakaria, B.L., Biswas, H., Mandal, D., 2008. Soil loss tolerance values for different physiographic region of Central India. Soil Use Manage. 24, 192-198.
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Letters 104(2-4), 424-439.
Lal, R., 1985. Soil erosion and crop productivity relationship for a tropical soil. In: EI-Swaify, S.A., Moldenhauer, W.C., Lo, A. (Eds.), Soil Erosion and Conservation. Soil Conservation Society of America, Ankeny, Iowa, 137-257.
Langbein, W.B., Dawdy, D.R., 1964. Occurrence of dissolved solids in surface waters in the United States. USDI Geol. Surv., Prof. Paper 501-D, 115-117.
Larson, W.E., 1981. Protecting the soil resource base. J. Soil Water Conserv. 36(1), 13-16.
Le Dortz, K., Meyer, B., Sébrier, M., Braucher, R., Bourles, D., Benedetti, L., Nazari, H., Foroutan, M., 2012. Interpreting scattered in-situ produced cosmogenic nuclide depth-profile data. Quat. Geochronol. 11, 98-115.
Le Dortz, K., Meyer, B., Sébrier, M., Nazari, H., Braucher, R., Fattahi, M., Benedetti, L., Foroutan, M., Siame, L., Bourlès, D., Talebian, M., 2009. Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran. Geophysi. J. Int. 179(2), 700-710.
Lee, K., Song, Y., Koo, H., Kim, H., Kweon, H., Koo, N., 2023. Evaluation of soil loss tolerance and tree growth features based on planting ground methods in the Alpine center, degraded forestland in the republic of Korea. Forests 14, 200.
Li, L., Du, S., Wu, L., Liu, G., 2009. An overview of soil loss tolerance. Catena 78, 93-99.
Li, L., Zhou, Z.H., Liu, G.C., 2005. The present situation and conceive of soil loss tolerance study. Advanc. Earth Sci. 20(9), 65-72.
Liu, G.C., Li, L., Wu, L., Wang, G., Zhou, Z., Du, S., 2009. Determination of soil loss tolerance of an Entisol in Southwest China. Soil Sci. Soci. Ameri. J. 73(2), 412-417.
Lombardi Neto, F., Bertoni, J., 1975. Tolerância de perdas de terras para solos do Estado de São Paulo. Instituto Agronômico, Campinas.
Macedo, L.T.S., Santos, L.A., Farias Filho, M.S., Oliveira, F.P., Almeida, R.G., Santos, R.V., Campos, M.C.C., 2023. Tolerance of soil loss by erosion in the western mesoregion of Maranhão. Revista de Agricultura Neotropical, Cassilândia-MS, 11(1), e8292.
Mallarino, A.P., Stewart, B.M., Baker, J.L., Downing, J.D., Sawyer, J.E., 2002. Phosphorus indexing for cropland: Overview and basic concepts of the Iowa phosphorus index. J. Soil Water Conserv. 57, 440-447.
Mandal, D., Dadhwal, K.S., Khola, O.P.S., Dhyani, B.L., 2006. Adjusted T values for conservation planning in Northeast Himalayas of India. J. Soil Water Conserv. 61(6), 391-397.
Mandal, D., Sharda, V.N., Tripathi, K.P., 2010. Relative efficacy of two biophysical approaches to assess soil loss tolerance for Doon valley soils of India. J. Soil Water Conserv. 65(1), 42-49.
Martha, M.B., Gerard, G., Rounsevell, M.D., 2004. The crop productivity–erosion relationship: an analysis based on experimental work. Catena 57, 55-76.
McCormack, D.E., Young, K.K., Kimberlin, L.W., 1982. Current criteria for determining soil loss tolerance. In: Schmidt, B.l., allmaras, R.r., Mannering, J.V., Papendick, R.I. (Eds.), Agronomy Society of America Special Publication, 45. Agronomy Society of America, Madison, Wisconsin.
Merchel, S., Benedetti, L., Bourlès, D.L., Braucher, R., Dewald, A., Faestermann, T., Finkel, R.C., Korschinek, G., Masarik, J., Poutivtsev, M., Rochette, P., 2010. A multi-radionuclide approach for in situ producedterrestrial cosmogenic nuclides: 10Be, 26Al, 36Cl and 41Ca from carbonate rocks, Nuclear Instruments Meth.Phys. Res. B, 268(7), 1179.
Merchel, S., Herpers, U., 1999. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta. 84(4), 215.
Midmorea, D.J., Jansena, H.G., Dumsday, R.G., 1996. Soil erosion and environmental impact of vegetable production in the Cameron Highlands, Malaysia. Agricul. Ecosys. Environ. 60(1), 29-46.
Minasny, B., McBratney, A.B., 2001. A rudimentary mechanistic model for soil formation and landscape development II. A two-dimensional model incorporating chemical weathering. Geoderma 103, 161-179.
Mirtskhulava, T.E., 2001. On the maximum soil loss tolerance. Eurasian Soil Sci. 34(3), 321-325.
Morgan, R.P.C., 2005. Soil erosion and conservation.
Nearing, M., 2002. Toward a new definition of soil loss tolerance for the United States. International Soil Conservation Organization Conference, Conference abstracts.
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R., 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J. Geophysi. Res.: Solid Earth, 94(B12), 17907-17915.
Ott, R., Gallen, S.F., Helman, D.: Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution. Earth Surf. Dynam. 11, 247-257.
Peter, B.S., Donald, M.F., Thomas, W.G., Thomas, W.G., Katherine, M., Susan, L.B., 2004. Rate of weathering rind formation on Costa Rican basalt. Geochimica ET Cosmochimica Acta 68(7), 1453-1472.
Pierce, F.J., Larson, W.E., Dowdy, R.H., 1984. Soil loss tolerance: maintenance of longterm soil productivity. J. Soil Water Conserv. 39(2), 136-138.
Pimentel, D., Burgess, M., 2013. Soil erosion threatens food production. Agricul. 3, 443-463.
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, Fitton, L., Saffouri, L., Blair, R., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267, 1117-1123.
Pimentel, D., Kounang, N., 1998. Ecology of soil erosion in ecosystems. Ecosys. 1, 416-426.
Qiao, X., Li, Z., Wamg, H., Zheng, S., Yang, S., 2024. Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 12(2), 298-312.
Rango, A., Shalaby, A.I., 1999. Applications of remote sensing to hydrology and water resources. Hydrol. Sci. J. 24(4), 485-498.
Ratke RF, Zuffo AM, Steiner F, Aguilera JG, de Godoy ML, Gava R, de Oliveira JT, Filho TAdS, Viana PRN, Ratke LPT, 2023. Can soil moisture and crop production be influenced by different cropping systems? AgriEngineering. 5(1), 112-126.
Roose, E., 1996. Land husbandry: components and strategy. FAO soils Bulletin N° 1503 70. FAO, Rome, 380 pages.
Ruan, F.S., 1997. The discussion on the reference index of soil erosion intensity class in granite slope. Res. Soil Water Conserv. 4(1), 113-119.
Salviano, A.A.C., Vieira, S.R., Sparovek, G., 1998. Erosion intensity and Crotalaria juncea yield on a southeast Brazilian Ultisol. Advanc. Geoecol. 31, 369-374.
Schertz, D.L., 1983. The base for soil loss tolerance. J. Soil Water Conserv. 38(1), 10-14.
Shabanian, E., Bellier, O., Siame, L., Abbassi, M.R., Bourlès, D., Braucher, R. and Farbod, Y., 2012. The binalud mountains: A key piece for the geodynamic puzzle of NE Iran. Tectonics 31, 6.
Shtompel, Y.A., Lisetskii, F.N., Sukhanovskii, Y.P., 1998. Soil loss tolerance of brown forest soils of Northwestern Caucasus under intensive agriculture. Eurasian Soil Sci. 31(2), 185-190.
Singh, P.D., Klamerus-Iwan, A., Hawryło, P., Sierka, E., Pietrzykowski, M., 2023. Possibility of spatial estimation of soil erosion using revised universal soil loss equation model and generalized additive model in post-hard coal mining spoil heap. Land Degrad. Dev. 1-13.
Skidmore, E.L., 1982. Soil loss tolerance. In: David, M.K. (Ed.), Determinants of Soil Loss Tolerance. ASA Spec. Publ., 45. ASA, Madison, pp. 87-93.
Small, E.E., Anderson, R.S., Hancock, G.S., 1999. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphol. 27(1-2), 131-150.
Smith, D.D., 1941. Interpretation of soil conservation data for field use. Agricul. Engin. 22, 173-175.
Smith, D.D., Whitt, D.M., 1948. Evaluating soil losses from field area. Agricul. Engin. 29, 394-396.
Sokouti Oskouei, R., 2011. An introduction to tolerable erosion and its measurement methods. Pelk Publication (in Persian).
Stamey, W.L., Smith, R.M., 1964. A conservation definition of erosion tolerance. Soil Sci. 97, 183-186.
Stocking, M.A., 2003. Tropical soil and food security: the next 50 years. Sci. 302(21), 1356-1359.
Sudhishri, S., Kumar, A., Singh, J.K., Dass, A., Nain, A.S., 2014. Erosion tolerance index under different land use units for sustainable resource conservation in a Himalayan watershed using remote sensing and geographic information system (GIS). Afr. J. Agri. Res. 9(41), 3098-3110.
Sverdrup, H., Warfvinge, P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl. Geochem. 8, 273-283.
Toy, T.J., Foster, G.R., Renard, K.G., 2001. Soil erosion: process, prediction, measurement and control. John Wiley & Sons Inc., New York, pp. 233-265.
Toy, T.J., Foster, G.R., Renard, K.G., 2002. Soil erosion: process, prediction, measurement, and control. John Wiley & Sons Inc., New York, 352 pages.
U.S. Environmental Protection Agency, 2012. Water quality assessment and total maximum daily loads information.
USDA-NRCS. 2014. General guidelines for assigning soil loss tolerance “T”. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=44089.wba
Velbel, M.A., Price, J.R., 2007. Solute geochemical mass-balances and mineral weathering rates in small watersheds: methodology, recent advances, and future directions. Appli. Geochemist. 22 (8), 1682-1700.
Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 94, 23-38.
Von Blanckenburg, F., 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Letters 237, 462-479.
Wakatsuki, T., Rasyldin, A., 1992. Rates of weathering and soil formation. Geoderma 52(34), 251-263.
Wakatsuki, T., Rasyldin, A., Naganawa, T., 1993. Multiple regression method for esti- mating rates of weathering and soil formation in watersheds. Soil Sci. Plant Nutri. 39(1), 153-159.
Wang, L., Li, X., Qin, B., Zheng, H., Zheng, Z., 2024. Catena 239, 107919.
Wesley, L., 2009. Soil formation, composition, and basic concepts. Environmental Science, Geology.
Willenbring, J.K., von Blanckenburg, F., 2010. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics. Earth-Sci. Review. 98(1), 105-122.
Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses-a Guide to Conservation Planning, USDA, Agriculture Handbook 537.
Wolf, M.K., Wiesmeier, M., Macholdt, J., 2023. Importance of soil fertility for climate-resilient cropping systems: The farmer's perspective. Soil Securit. 13, 100119.