با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 دانش‌آموخته کارشناسی ارشد، زمین‌شناسی زیست محیطی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

مقدمه
حوضه گویجه‌‌بل به‌دلیل برون‌زدگی وسیع سازندهای آذرین، دگرگونی و رسوبی و میزان بارش مناسبی که دریافت می‌‌کند، می‌‌تواند پتانسیل ذخیره و انتقال منابع آب سازند سخت را داشته باشد. این واحدهای سازند سخت از یک طرف کیفیت خوبی داشته، از طرف دیگر به‌دلیل قرار گرفتن در ارتفاعات می‌‌تواند بدون ایستگاه پمپاژ برای تأمین آب شرب شهر اهر مورد توجه قرار گیرد. بیشتر چشمه‌‌های موجود در حوضه گویجه‌‌بل از سازندهای سخت خارج می‌‌شوند که تمرکز این چشمه‌‌ها در مرکز و شمال حوضه حاکی از توسعه آبخوان سازند سخت در این واحدها است. محدودیت منابع آبرفتی و برداشت‌‌های بی‌‌رویه از منابع آب زیرزمینی از طریق چاه‌‌ها منجر به کاهش شدید منابع آبرفتی شده است و مدیریت عرضه آب را به سمت منابع آب سازند سخت معطوف کرده است. حدود 65 درصد حوضه به‌دلیل برون‌زدگی وسیع سازندهای آذرین، دگرگونی و رسوبی و میزان بارش مناسبی که دریافت می‌‌کند (حدود 342.2 میلی‌‌متر در سال)، می‌‌تواند پتانسیل ذخیره و انتقال منابع آب سازند سخت را داشته باشد. هدف از این پژوهش، بررسی و شناخت منابع آب زیرزمینی از نظر کمی و کیفی و بررسی وضعیت منابع آب زیرزمینی در آبخوان سازند سخت منطقه گویجه‌‌بل است که می‌‌تواند در مواقع بحرانی برای تامین آب شرب شهر اهر مورد استفاده قرار گیرد. بخش اعظم آب آشامیدنی مردم شهرستان اهـر از مخـزن سد ستارخان در مسیر رودخانه به تصفیه‌‌خانه شهر اهر تأمین می‌شود که احتمال آلودگی در طول مسیر رودخانه به‌وسیله پساب‌‌های حاصله از معادن مس وجود دارد و احتمال بهره‌‌مندی از منابع آب سطحی را محدود می‌‌کند. همچنین به‌دلیل گسترش فعالیت‌‌های کشاورزی و باغداری در این منطقه و محدودیت منابع آبرفتی از یک طرف و برداشت‌‌های بی‌‌رویه از منابع آب زیرزمینی از طریق چاه‌‌ها، منجر به کاهش شدید منابع آبرفتی شده است و مدیریت عرضه آب را به سمت منابع آب سازند سخت معطوف کرده است.
 
 
مواد و روش‌‌ها
منطقه گویجه‌بل در 10 کیلومتری جنوب غرب شهرستان اهر واقع شده است و بخشی از حوزه آبخیز رودخانه اهرچای است که پس از پیوستن به رودخانه قره‌‌سو به رودخانه ارس ملحق می‌شود. در این پژوهش از دو روش سنجش از دور و سامانه اطلاعات جغرافیایی (روش تحلیل سلسه مراتبی (AHP) و روش هم‌پوشانی وزنی (Weighted Overlay) و میانگین‌‌گیری وزنی درجه‌‌ای (Ordered Weighted Average (OWA)) برای تجزیه و تحلیل داده‌‌ها بهره گرفته شده است. در روش سنجش از دور، از تصاویر ماهواره‌‌ای لندست 8، برای تهیه نقشه رستری شاخص رطوبت اختلاف نرمال و نقشه رستری شاخص پوشش گیاهی اختلاف نرمال استفاده شد. در فرایند تحلیل سلسله مراتبی، داده‌‌های معیارها بر اساس اهمیت هر معیار، از مقیاس 1 تا 9 رتبه‌‌بندی شده و به صورت دوتایی، مقایسه می‌شوند. در روش هم‌پوشانی وزنی، با توجه به تأثیر و اهمیت مختلف هر یک از لایه‌‌ها نسـبت بـه یکدیگر، به هر یک از لایه‌‌ها بر اساس اهمیت آن لایه در آن موضوع مورد بررسی، وزنی تخصیص داده شده است. روش میانگین‌‌گیری وزنی درجه‌‌ای نیز برای رتبه‌‌بنـدی معیارها بر اساس نظرات کارشناسی و یا از طریق مقایسه زوجی برای کنترل سطح جبران‌‌پذیری معیارها نسبت به معیارهای دیگر بهره گرفته شده است. در این پژوهش، نمونه‌برداری از پنج منبع آب زیرزمینی و آب رودخانه گویجه‌‌بل انجام و ازنظر هیدروشیمی مورد تحلیل قرار گرفت. این نتایج شامل تحلیل هشت یون اصلی (سدیم، کلسیم، منیزیم، پتاسیم، کلر، کربنات، بی کربنات و سولفات) و اندازه‌گیری پارامتر TDS و pH و محاسبه سه پارامتر SAR ، Na و TH است. در این بررسی، وضعیت هدایت الکتریکی، میزان املاح محلول، میزان یون کلر و کیفیت آب‌‌های زیرزمینی منطقه از نظر شرب در منابع آب زیرزمینی مورد بررسی قرار گرفته‌اند. همچنین از داده‌های هواشناسی ایستگاه سینوپتیک اهر (شامل داده‌‌های بارش، دما و تبخیر) در بازه زمانی 20 سال گذشته استفاده شد. از داده‌های موقعیت چشمه‌ها به‌منظور تعیین تراکم آنها در بخش صحت‌‌سنجی مورد استفاده قرار گرفت.
 
نتایج و بحث
به‌منظور تعیین پتانسیل منابع آب زیرزمینی حوضه گویجه‌‌بل، لایه‌‌های اطلاعاتی شامل لیتولوژی، تراکم خطواره‌‌ها، اختلاف ارتفاع، شاخص رطوبت، شیب، تراکم آبراهه، جهت شیب و شاخص پوشش گیاهی تهیه و با استفاده از روش AHP، weighted overlay و OWA نقشه پهنه‌‌بندی و میزان هم‌‌پوشانی معیارهای در نظر گرفته شده، مشخص شد. لایه‌‌های تهیه شده بر اساس اهمیت نسبی هر یک، با استفاده از روش AHP با یکدیگر مقایسه و وزن نسبی هر لایه تعیین شد. با تأثیر وزن‌‌های نسبی به دست آمده از فرایند تحلیل سلسله مراتبی (AHP) روی لایه‌‌های رستری ایجاد شده به نسبت تأثیری که در پتانسیل‌‌یابی دارند، وزنی بین 1 تا 9 اختصاص داده شد. سپس لایه‌‌ها در بخش weighted overlay هم‌‌پوشانی پیدا کردند تا نقشه نهایی پتانسیل به‌‌دست آید. در روش میانگین‌‌گیری وزنی درجه‌‌ای با استفاده از نقشه‌‌های رستری به دست آمده، نقشه‌‌های فازی تهیه و در نرم‌افزار ARCGIS ، نقشه پتانسیل منابع آب زیرزمینی به‌‌دست آمد. درنهایت، به‌منظور صحت‌‌سنجی نقشه‌‌های حاصل از دو روش OWA  و Weighed overlay، از موقعیت چشمه‌‌ها برای صحت‌‌سنجی نقشه‌‌های پتانسیل‌‌یابی بهره گرفته شد و نتیجه آن وجود حدود 50 درصد از چشمه‌ها در مناطق با پتانسیل متوسط به بالا بوده است. برای بررسی کیفیت آب به‌منظور امکان‌سنجی تامین آب شرب منطقه، وضعیت هدایت الکتریکی، میزان املاح محلول، میزان یون کلر و کیفیت آب‌‌های زیرزمینی منطقه از نظر شرب و کشاورزی مورد بررسی قرار گرفتند. بر این اساس، میزان هدایت الکتریکی از ارتفاعات به طرف خروجی حوضه افزایش می‌یابد و روند کلی تغییرات آن حاکی از افزایش EC از بالادست جریان به طرف پایین‌‌دست است. این مقدار در نمونه S1، 325 و در نمونه S2 به 381 میکروزیمنس بر سانتی‌‌متر می‌‌رسد. تغییرات یون کلر نیز مانند تغییرات EC است به عبارت دیگر به نظر می‌‌رسد نقش کلر (و به تبع آن سدیم) در شوری منابع آب زیرزمینی منطقه بیش از سایر یون‌‌ها است. از دیاگرام شولر برای تعیین کیفیت آب برای شرب استفاده شده، بخش عمده‌‌ای از آب‌‌های زیرزمینی منطقه کیفیت خوبی برای آشامیدن دارند که این وضعیت نتیجه فقدان سازندهای آلاینده مانند واحدهای نمکی، رسی و مارنی وسیع در منطقه است. این نتایج مشابه قابلیت شرب منابع آب در سازندهای سخت و کارستی غرب ارومیه است که دارای آب با کیفیت خوب برای شرب است.
 
نتیجه‌‌گیری
بر اساس نقشه پهنه‌‌بندی، بخش جنوب غربی حوضه پتانسیل بالایی برای منابع آب زیرزمینی دارد. بررسی ارتباط بین تعداد چشمه‌‌ها و چاه‌‌ها و مناطق با پتانسیل منابع آبی مختلف و انطباق حدود 50 درصدی چشمه‌‌ها نشان داد که نقشه پتانسیل‌‌یابی با روش OWA بیشترین انطباق را با موقعیت چشمه‌‌ها دارد. همچنین کیفیت منابع آب زیرزمینی منطقه نیز مورد بررسی قرار گرفته، نتایج حاصل بیانگر افزایش شوری از ارتفاعات به سمت مرکز و خروجی حوضه است. در عین حال میزان EC از 310 تا 1444 میکروزیمنس بر سانتی‌‌متر متغیر است. بخش عمده‌‌ای از آب‌‌های زیرزمینی محدوده، کیفیت خوبی برای آشامیدن دارند که این وضعیت نتیجه عدم وجود سازندهای آلاینده مانند واحدهای نمکی، رسی و مارنی در منطقه است. بنابراین، نتایج حاصل شده از روش OWA، هدف اصلی این پژوهش که بررسی پتانسیل آب زیرزمینی در سازندهای سخت است را به دست می‌دهد. در منطقه گویجه بل، عملیات آبخیزداری به روش بیولوژیک و یا از طریق ساخت سازه‌های کنترل سیلاب و رسوب می‌تواند منجر به افزایش نفوذپذیری شده و میزان تغذیه از طریق نزولات جوی را افزایش دهد. هر عملیات آبخیزداری که منجر به کاهش سرعت رواناب‌ها و در نتیجه افزایش نفوذ آن شود، می‌تواند به تغذیه آبخوان‌های سازند سخت کمک کند. به‌منظور تعیین پتانسیل کمی آبخوان و تخمین حجم آب قابل استحصال، پیشنهاد می‌شود عملیات ژئوفیزیک و حفاری چاه‌های اکتشافی در مناطق امیدبخش (دارای پتانسیل بالای آب زیرزمینی) صورت گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation the possibility of using Goijeh Bel fractured rocks aquifer to supply drinking water to Ahar city

نویسندگان [English]

  • Abdorreza Vaezihir 1
  • Fatemeh Safari 2

1 Professor, Department of Earth Sciences, Faculty Natural Sciences, University of Tabriz, Tabriz, Iran

2 MSc Graduate of Environmental Geology, Department of Earth Sciences, Faculty Natural Sciences, University of Tabriz, Tabriz, Iran

چکیده [English]

Introduction
The Goijeh Bel basin, with extensive outcrops of igneous, metamorphic, and sedimentary formations and adequate rainfall (342.2 mm annual precipitation), has significant potential for storing and transferring groundwater through fractured media. These hard formation units, located in elevated areas, can supply drinking water to Ahar city without the need for pumping stations. Most springs in the basin originate from hard formations, with their concentration in the center and north indicating the development of aquifers in these units. Overextraction of groundwater through wells and the limitation of alluvial resources have shifted water resource management toward utilizing hard formation water sources. This study investigates the quantity and quality of groundwater resources in the Goijeh Bel basin to identify methods for sustainable water management and assess their suitability as an emergency drinking water source for Ahar city.
 
Materials and methods
The study area is located 10 km southwest of Ahar city within the Aharchai River basin, which ultimately joins the Aras River. Remote sensing and GIS techniques, including the Analytic Hierarchy Process (AHP), Weighted Overlay, and Ordered Weighted Averaging (OWA) methods, were used for data analysis. Landsat 8 satellite images were processed to generate raster maps for the Normalized Difference Humidity Index (NDHI) and Normalized Difference Vegetation Index (NDVI). In the AHP method, criteria were ranked and compared pairwise, with weights assigned based on their importance. These weighted layers were overlaid to create a groundwater potential map. Fieldwork involved sampling five groundwater sources and Goijeh Bel River water, followed by hydrochemical analysis of eight major ions (Na⁺, Ca²⁺, Mg²⁺, K⁺, Cl⁻, CO₃²⁻, HCO₃⁻, SO₄²⁻), TDS, pH, SAR, %Na, and TH. Electrical conductivity (EC), dissolved solutes, and chloride ion concentrations were assessed to evaluate groundwater quality for drinking and agricultural purposes. Meteorological data from Ahar’s synoptic station over the past 20 years were also analyzed. The spatial distribution of springs was used to validate groundwater potential maps.
 
Results and discussion
Using AHP, Weighted Overlay, and OWA methods, groundwater potential maps were generated based on lithology, line density, elevation, humidity index, slope, drainage density, aspect, and vegetation index. The OWA method showed the highest agreement with spring locations, with approximately 50% of springs situated in areas of medium to high groundwater potential. Qualitative analysis revealed an increase in salinity and EC from upstream to downstream, with EC values ranging from 310 to 1,444 µS/cm. Chloride ion concentrations followed a similar pattern, suggesting a dominant role of sodium and chloride in groundwater salinity. Schuler’s diagram indicated that most groundwater in the basin is suitable for drinking due to the absence of pollutant formations such as salt, clay, or marl. These findings align with studies on hard and karst formations in western Urmia, which also report good-quality groundwater.
 
Conclusions
The southwestern part of the basin exhibits high groundwater potential. Validation of groundwater potential maps using spring locations confirmed the reliability of the OWA method. The groundwater quality assessment demonstrated increasing salinity toward the basin outlet, but most groundwater remains suitable for drinking. Watershed operations, such as biological measures or flood and sediment control structures, can enhance infiltration and aquifer recharge in the hard formations. To quantify aquifer potential and estimate extractable water volumes, geophysical surveys and exploratory drilling in high-potential areas are recommended.

کلیدواژه‌ها [English]

  • Alluvial resources
  • Groundwater
  • Infiltration
  • OWA
  • Potential assessment
Adesunloro, G.M., Olumodeji, I., Itakorode, O.D., 2022. Geo-electrical investigation of ground water potential using vertical electrical sounding. J. Advanc. Res. Rev. 15, 322-329.
Aghanabati, A., 2004. Geology of Iran. Geological Organization of The Country (in Persian).
Alavi Panah, K., 2006. Application of remote sensing in earth science. Iran: University of Tehran, 496 pages (in Persian).
Asghari Moghaddam, A., 2010. Principles of groundwater knowledge. First Edition. Publications of University of Tabriz. 349 pages (in Persian).
Ayazi, M.H., Pirasteh, S., Rizvi, S.M., Safari, H., Ramli, F.M., Pradhan, B., S.M. Rizvi, S.M., 2010. Using ERS-1 synthetic aperture radar for flood delineation, Bhuj Taluk, Kuchch District Gujarat, India. Int. Geoinform. Res. Dev. J. 1, 13-22.
Benjmel, K., Amraoui, F., Boutaleb, S., Ouchchen, M., Tahiri, A., Touab, A., 2020. Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis, case of the Ighrem Region, Western Anti-Atlas, Morocco. J. Water.
Bhuvaneswaran, C., Ganesh, A., Nevedita, S., 2015. Spatial analysis of groundwater potential zones using remote sensing, GIS and MIF techniques in uppar Odai sub-watershed, Nandiyar, Cauvery basin, Tamilnadu. Int. J. Curr. Res. 7, 20765-20774.
Binh, T.N.K.D., Vromant, N., Hung, N.T., Hens, L., Boon, E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. J. Environ. Develop. Sustain. 7, 519-536.
Chowdhury, A., Jha, M.K., Machiwal, D., 2003. Application of remote sensing and GIS in groundwater studies: an overview. Proceedings of The International Conference on Water and Environment (WE-2003). J. Ground Water Pollu. 39-50.
Das, S., 2017. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques, Model. J. Earth Syst. Environ. 3, 1589-1599.
Ebrahimi, M., 2010. Calculating the vegetation percentage using artificial neural networks and plant indices to improve the modified vertical drought index (Shitour Basin, Yazd). MSc Thesis, 15 pages (in Persian).
Falah, F., Daneshfar, M., Ghorbaninejad, S., 2017. Application of the statistical index model in groundwater potential mapping in the Khorramabad Plain. J. Water Sustain. Develop. 4,89-98 (in Persian).
Feizizadeh, B., Blaschke, T., 2013. GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. J. Nat. Hazards 65, 2105-2128.
Firouzi, F., Tavosi, T., Mahmoudi, P., 2019. Investigating the sensitivity of NDVI and EVI vegetation indices to dry and wet years in arid and semi-arid regions, case study: Sistan plain, Iran. J. Geograph. Data (SEPEHR), 28,163-179 (in Persian).
Ghimire, M., Chapagian, P.S., Shrestha, S., 2017. Mapping of groundwater spring potential zone using geospatial techniques in the Central Nepal Himalayas: A case example of Melamchi-Larke Area. J. Earth Syst. Sci. 17, 00305.
Hardisky, M.A., Klemas, V., Smart, R.M., 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogram. Engin. Remote Sens. 49, 77-83.
Haridas, V.R., Aravindan, S., Girish, G., 1998. Remote sensing and its applications for groundwater favourable area identification. Q JGARC. 6, 18e22.
Horton, R.E., 1945. Erosional development of streams and their drainage density: hydrophysical approach to quantitative geomorphology. Geol. Soc. Amer. Bull., 56, 275-370.
Jafarian, H., Vaezihir, A., Pirkharati, H., 2018. Determining the factors affecting the hydrochemistry of groundwater resources in the hard and karst formations of western Urmia. J. Hydrogeomorph. 15, 75-94 (in Persian).
Kao, J.J., Lin, H.Y., 1997. Multifactor Spatial analysis for landfill siting. J. Environ. Engin. 122, 902-908.
Koh, C.N., Lee, P.F., Lin, R.S., 2006. Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. J. Diver.  Distribu. 12, 546-554.
Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2011. Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu India: a GIS approach. J. Environ. Earth Sci. 64, 373-381.
Morawitz, D., Blewett, T., Cohen, A., Alberti, M., 2006. Using NDVI to assess vegetative land cover. 277-295.
Murray, J., Ogden, A.T., Mcdaniel, P.M., 2003. Development of a GIS database for ground water recharge assessment of the Palo use. J. Soil Sci. 11, 759-768.
Nabavi, M., 1976. An introduction to the geology of Iran. Geological Organization of the country.
Panabokke, C.R., Perera, A.P.G.R.L., 2005. Groundwater resources of sri lanka. Sri Lanka: Water Resources Board, Chapter 1, 29 pages.
Panel, P., Larsson, I., 1984. Ground water in hard rocks. United Nations Educational, Scientific and Cultural Organization, 234 pages.
Rahnama, M., Aquajni, H., Fattahi, M., 2012. Integrating multi-criteria evaluation techniques with geographic information Systems for landfill site selection: a case study using ordered weighted average in Mashhad. J. Geograph. Environ. Hazard. 1, 87-106 (in Persian).
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the Great. Plains with ERTS. Proceedings, Third ERTS Symposium, NASA SP-351, 1, 309-317.
Saaty, T.L., 1977. Scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234-281.
Saaty, T.L., 1987. Exploring the interface between the hierarchies, multiple objectives and the fuzzy sets, Fuzzy Set. Syst. 1, 57-68.
Saaty, T.L., 1980. The analytical hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill, London, England, 287 pages.
Saaty, T.L., 1982. Decision making for leaders, Lifetime Learning Publications, Belmont, CA, 291 pages.
Saaty, T.L., 1986. Decision making for leaders: The analytic hierarchy process for decisions in complex environments, RWS, Pittsburgh, 199 pages.
Saaty, T.L., 1988. Multicriteria decision making: The analytic hierarchy process, RWS, Pittsburgh.
Saaty, T.L., Alexander, J.M., 1989. Conflict resolution: The analytic hierarchy approach. J. Computer Sci.
Saaty, T.L., Vargas, L.G., 1991. Prediction, projection and forecasting. Kluwer Academic Publishers. Dordrecht, 251 pages.
Sahu, A., 2014. Identification and mapping of the water-logged areas in Purba Medinipur part of Keleghai river basin, India: RS and GIS methods. J. Adv. Geosci. 2, 59-65.
Sedaghat, M., 1999. Land and water resources (groundwaters), Payam Noor University Publications (in Persian).
Singhal, B.B.S., 2008. Nature of Hard Rock Aquifers: Hydrogeological Uncertainties and Ambiguities, Dynamics in hard rock aquifers, Chapter 2, 20-39 pages.
Sisay, L., 2007. Application of remote sensing and GIS for groundwater potential zone mapping in Northern Ada’a plain (Modjo catchment). J. Earth Sci.
Sivaramakrishnan, J., Asokan, A., Sooryanarayana, K.R., Hegde, S.S., Benjamin, J., 2015. Occurrence of Ground Water in Hard rock under distinct Geological setup. International Conference on Water Resources, Coastal and Ocean Engineering, India. J. Aqua. Procedia 4, 706-712.
Teimouri, M., Asadi, A., 2021. Delineation of groundwater potential zones in Torbate Jam district using maximum entropy and AHP methods. J. Watershed Engin. Manage. 13, 339-354 (in Persian).
Vaezihir, A., Tabarmayeh, M., 2016. Evaluation of potential groundwater resources in fractured rocks using AHP and SAW methods, case study: Almaneh Basin, Marivan, Iran. J. Water Soil 30, 1461-1477 (in Persian).
Vaezihir, A., Vafadar, M., Aghaie, V., 2019. Evaluation of groundwater potential in the karstic and hard rock formations of Moro Mountain using AHP, SAW and F-AHP methods. J. Geograph. Space 18, 215-234 (in Persian).
Waikar, M.L., Nilawar, A.P., 2014. Identification of groundwater potential zone using remote sensing and GIS Technique. Int. J. Innov. Res. Sci. Engin. Technol. 3, 12163-12174.
Yager, R.R., 1991. Connectives and quantifiers in fuzzy sets. J. Fuzzy Sets Syst. 40, 39-76.