Document Type : Research Paper
Authors
1 PhD Student, Department of Water science and engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
2 Associate Professor, Department of Water science and engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
3 Associate Professor, Department of Civil and Architectural Engineering, Faculty of Engineering, Sultan Qaboos University, Muscat, Oman
Abstract
Introduction
Climatic changes and human activities are among the key factors influencing river flow. Determining the contributions of climate change and human activities is essential for the sustainable management of water resources. Climate change is associated with variations in temperature and precipitation, leading to changes in the spatial and temporal distribution patterns of rainfall. Human activities, both directly and indirectly, affect water resources. The rational use of water resources, including runoff, is therefore critical. This study aims to quantify the contributions of climate change and human activities to runoff variations in the Qazvin Plain salt marsh.
Materials and methods
The Qazvin Plain, covering approximately 450,000 hectares, is located between longitudes 49°25′ to 50°35′ E and latitudes 35°25′ to 36°25′ N in Iran. In this research, the Mann-Kendall test was applied to analyze the trends in annual precipitation, runoff, air temperature, and potential evapotranspiration during the period 1990–2020. The Pettitt test and the double mass curve method for precipitation-runoff analysis were used to identify the change point in runoff values. Finally, hydrological sensitivity analysis based on the Budyko-Zhang hypothesis was employed to determine the respective contributions of human activities and climate change to runoff variations.
Results and discussion
The results of the Mann-Kendall test revealed a significant decreasing trend in runoff at a 0.01 significance level. Conversely, the average annual temperature and potential evapotranspiration exhibited significant increasing trends at the same significance level. Despite a reduction in average annual precipitation at the basin level, no statistically significant trend was observed for rainfall. The results of the Pettitt test and the cumulative precipitation-runoff curve identified 1996 (1375 in the Persian calendar) as the change point in the annual runoff series. Using hydrological sensitivity analysis based on the Budyko-Zhang hypothesis, the contributions of climate change and human activities to runoff variations were quantified as -0.21 mm (-161.2%) and 0.08 mm (61.2%), respectively.
Conclusions
Trend analysis in the study area demonstrated a decreasing trend in runoff and an increasing trend in average annual temperature and potential evapotranspiration. Runoff values in Shorezar identified 1996 as the change point in the time series. According to the Budyko-Zhang method, climate change has contributed to a decrease in runoff, while human activities have increased the water level in the salt marsh.
Keywords