با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران

چکیده

مقدمه
دشت سلماس، یکی از بحرانی‌‌ترین دشت‌‌های کشور از نظر فرونشست است. بـه‌طورکلی، عوامل مختلفی سبب فرونشست زمین می‌شوند، ولی در بسیاری مناطق برداشت بی‌رویه آب از سفره‌های زیرزمینی باعث فرونشست زمین می‌شود. افزایش روزافزون بهره‌برداری از آب‌های زیرزمینی به‌ویژه در حوضه‌هایی که با نهشته‌های آبرفتی، دریایی کم‌عمق یـا دریاچـه‌ای تحکیم نیافته انباشته شده‌اند، به نشست و یا فروریزش زمین منجر می‌شود. با برداشت بیش از حـد آب زیرزمینی، سطح ایستابی لایه آبدار پایین رفته و فشار هیدرواستاتیک کـاهش مـی‌یابـد کـه درنتیجـه امکان نشست زمین را به‌صورت تدریجی فراهم می‌نماید. فرونشست ماندگار دشـت‌هـا عمدتاً در اثـر همین عامل یعنی برداشت بیش از حد مجاز آب و فشرده‌شدن لایـه‌هـای رسـی و سـیلتی میـان آبخـوان صورت می‌گیرد. در این صورت، حتی اگر سطح ایستابی مجدداً بالاتر آید، امکان بازگشت زمین به تـراز اولیه خود وجود ندارد.
 
مواد و روش‌‌ها
در این پژوهش، حساسیت فرونشست دشت سلماس با بهره‌‌گیری از لایه‌‌های عوامل مؤثر در فرونشست با نرم‌افزار ArcGIS و منطق فازی بررسی شد. در مرحله اول، آمار و اطلاعات برخی عوامل که موجب ایجاد فرونشست می‌‌شوند، شامل افت سطح آب زیرزمینی، دبی بهره‌‌برداری از چاه‏ها، ضریب ذخیره آبخوان، ضریب انتقال‌‌پذیری، بارش، نقشه DEM، بافت خاک و عمق سنگ بستر، جمع‌‌آوری و نقشه رستری هر کدام از این عوامل در سطح آبخوان تهیه شد. در مرحله بعد، فازی‌‌سازی لایه‌‌ها با استفاده از توابع عضویت فازی، با توجه به تأثیر کاهش یا افزایش هر کدام از این عوامل در فرونشست زمین انجام گرفت. سپس، نقشه‌‌ها با عملگرهای فازی (Gamma، OR، AND، SUM، PRODUCT) با هم تلفیق شده و نقشه واحد حساسیت فرونشست آبخوان به‌دست آمد. در نهایت، برای انتخاب بهترین عملگر ترکیب، نتایج را با داده‌‌های مشاهده‌‌ای صحرایی مقایسه شد و با شاخص عملکرد منحنی ROC کنترل و صحت‌‌سنجی صورت گرفت.
 
نتایج و بحث
نتایج نشان داد که عملگر OR با AUC= 0.693 کمترین انطباق را با فرونشست رخ‌داده در منطقه دارد. عملگرهای گاما با سطح زیر منحنی بالای 70 درصد، بیشترین همپوشانی یا انطباق را با فرونشست مشاهده‌‌ای در دشت داشتند و در این پژوهش عملگر گامای 0.9 با  0.805=AUC به‌عنوان بهترین عملگر فازی انتخاب شد. نتایج نشان می‌‌دهد که قسمت شرق آبخوان از نظر فرونشست بحرانی است. از کل مساحت دشت سلماس، 25 درصد معادل 93 کیلومترمربع دارای فرونشست با حساسیت خیلی بالا است.
 
نتیجه‌‌گیری
با توجه به نتایج به‌دست آمده می‌توان بیان کرد که علی‌رغم اینکه مقدار AUC اپراتور فازی sum بالاتر است؛ ولی در نقشه فازی گاما با مقدار 0.9 بیشترین انطباق را با واقعیت زمینی دارد، هرچند مقدار AUC کمتری دارد. ذکر این نکته ضروری است، عملگرهای حداقل‌سازی AND و Product با ایجاد منطقه با حساسیت کم و عملگرهای حداکثرسازی OR و SUM با حداکثرسازی منطقه، نمی‌‌توانند کارایی مطلوبی در تهیه نقشه حساسیت فرونشست داشته باشند و در اینجا فقط برای نمایش‌‌دادن ضعف کارایی اپراتورهای فازی در حداکثر یا حداقل‌سازی حساسیت فرونشست زمین، استفاده شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of land subsidence susceptibility in the Salmas Plain Aquifer Northwestern Lake Urmia, utilizing fuzzy logic

نویسندگان [English]

  • Somayeh Karimiasl 1
  • Behzad Hessari 2
  • Kamran Zeinalzadeh 2
  • Mahdi Erfanian 3

1 PhD Student in Water Resources Engineering, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Associate Professor, Department of Pasture and watershed, Faculty Natural Resources, Urmia University, Urmia, Iran

چکیده [English]

Introduction
Salmas Plain represents one of the most critical areas in the country experiencing subsidence. In general, various factors cause land subsidence, but in many areas, the excessive extraction of ground water from aquifers causes land subsidence. The increasing use of ground water, especially in the sites that are accumulated with alluvial deposits, shallow sea or unconsolidated lake, leads to subsidence or collapse of the land. With the excessive extraction of ground water, the water level of the aquifer decreases and the hydrostatic pressure decreases, which makes it possible for the land to subside gradually. Subsidence in plains mostly occurs due to this factor, namely excessive groundwater extraction and compaction of clay and silt layers between aquifers. In this case, even if the water table level rises again, the land cannot return to its original level.
 
Materials and methods
In this study, the susceptibility of land subsidence in Salmas Plain was investigated using layers of influential factors in subsidence with ArcGIS software and fuzzy logic. In the first stage, statistical information on some factors causing subsidence, including groundwater level decline, well extraction rate, aquifer storage coefficient, transmissivity coefficient, precipitation, DEM map, soil texture, and bedrock depth, was collected and raster maps of each of these factors at the aquifer level were prepared. In the next stage, fuzzy layering was performed using fuzzy membership functions based on the impact of decreasing or increasing each of these factors on land subsidence. Subsequently, the maps were combined using fuzzy operators (Gamma OR, AND, SUM, PRODUCT) to obtain a unified map of aquifer subsidence susceptibility. Finally, to select the best combination of operators, the results were compared and evaluated with field observation data and the ROC curve performance index.
 
Results and discussion
The results showed that the OR operator had the lowest conformity with observed subsidence in the area with an AUC of 0.693. Gamma operators with an AUC above 70% had the highest overlap or conformity with observed subsidence in the plain. In this study, the Gamma 0.9 operator was selected as the best fuzzy operator with an AUC of 0.805. The results indicate that the eastern part of the aquifer is critical in terms of subsidence. Approximately 25% of the total area of Salmas Plain, equivalent to 93 square kilometers, has subsidence with very high susceptibility.
 
Conclusion
Based on the results obtained, it can be said that although the AUC value of the fuzzy operator sum is higher, the Gamma operator with a value of 0.9 has the highest conformity with the ground reality on the fuzzy map, even though it has a lower AUC value. It is essential to mention that the minimum operator AND and Product create a region with low susceptibility, while the maximum operator OR and SUM maximize the susceptible area. They cannot achieve satisfactory performance in preparing a subsidence susceptibility map. Here, they have only been used to demonstrate the inefficiency of fuzzy operators in maximizing or minimizing subsidence susceptibility.

کلیدواژه‌ها [English]

  • Alluvial deposits
  • Critical areas
  • Fuzzy operations
  • Groundwater level
  • ROC
Consulting Engineers, 2014. Studies on updating water resources balance for the studied areas in the Lake Urmia Basin ending period in water year 1389-90. Water Resources Balance, Ministry of Energy, West Azerbaijan Regional Water Company (in Persian).
Dehghani, M., Nikoo, M.R., 2019. Monitoring and management of land subsidence induced by over-exploitation of groundwater. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques, 271-296, Springer, Cham (in Persian). 
Faryabi, M., 2023. A fuzzy logic approach to land subsidence susceptibility mapping: using hydrogeological data. Environ. Earth Sci. 82, 209.
FAO, 2015. Shared global vision for Groundwater Governance 2030 and a call-for-action.
Galloway, D.L., Jones, D.R., Ingebritsen, S.E., 1999. Land subsidence in the United States (Vol. 1182). Geological Survey (USGS).
Gharekhani, M., Nadiri, A.A., Khatibi, R., Sadeghfam, S., 2021. An investigation into time-variant subsidence potentials using inclusive multiple modelling strategies. J. Environ. Manage. 294, 112949.
Hosseini Milani, M., 1994. Overdraft of groundwater resources and its effects. Proceedings of the National Conference of groundwater resources, Sirjan, Iran (in Persian).
Kakar, N., Kakar, D.M., Khan, A.S., Khan, S.D., 2019. Land subsidence caused by groundwater exploitation in Quetta Valley, Pakistan. Int. J. Eco. Environ. Geo. 10-19
Konikow, L.F., 2011. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysi. Res. Letters 38(17).
Lohman, S., 1961. Compression of elastic artesian aquifers. US Geol. Surv. Prof. Pap., 424-B, 47-49.
Mesri, M., Satarzadeh. Y., 2017. Investigating the potential of land subsidence caused by the drop in the Ardabil plain aquifer water level. Proccedings of 16th Iranian Hydraulics Conference, September, Iran (in Persian).
Mohebbi Tafresh, G., Nakhaei, M., Lak, R., 2021. Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal, 86(3), 1203-1223.
Najafi Igdir, A., Choubin, B., Shirani, K., 2023. Land subsidence estimation in Salmas Plain using differential interferometric synthetic aperture radar algorithm. Watershed Manage. Res., in Press (in Persian).
Nameghi, H., Hosseini‌‌, S.M., Sharifi, M.B., 2013. An analytical procedure for estimating land subsidence parameters using field data and InSAR images in Neyshabur Plain. Sci. Quart. J. Iranian Associ. Engineer. Geo. 6(1-2), 33-50 (in Persian).
Nour, H., 2017. Analysis of groundwater resources utilization and their current condition in Iran. J. Rainwater Catch. Syst. 5(2), 29-38 (in Persian).
Oh, H.J., Lee, S., 2010. Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineer. Geo. 115(1), 36-48.
Othman, A., Abotalib, A.Z., 2019. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: case study from Central Saudi Arabia. Environ. Earth Sci. 78(7), 243.
Park, I., Choi, J., Lee, M.J., Lee, S., 2012. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers Geosci. 48, 228-238.
Putra, D.P.E., Setianto, A., Keokhampui, K., Fukuoka, H., 2011. Land subsidence risk asseessment in Karst region, case study: Rongkop, Gunung Kidul, Yogyakarta-Indonesia. Mitteilungen zur Ingenieurgeologie und Hydrogeologie-Festschrift Zum, 60, 39-50.
Raines, G.L., Sawatzky, D.L., Bonham-Carter, G.F., 2010. New fuzzy logic tools in ArcGis 10: ArcUser. Esri.com.
Maleki, A., Rezaee, P., 2016. Forecast locations at risk of subsidence plain Kermanshah. J. Spatial Plann. 20(1), 235-251 (in Persian).
 Saberi, j., Emamyari, K., 1989. Map of land resource and capacity assessment studies. Soil Water Res. Inst. Agricul. Nat. Resour. Res. Organiza. West Azarbaijan Province (in Persian).
Saemian, P., Tourian, M.J., AghaKouchak, A., ‌‌Madani, K., Sneeuw, N., 2022. How much water did Iran lose over the last two decades?  J. Hydrol.: Region. Studies (in Persian).
Safdari, Z., Nahavandchi, H., Joodaki, G., 2022. Estimation of groundwater depletion in Iran’s catchments using well data. Water 14, 131 (in Persian).
Salehi Moteahd, F., Hafezi Moghaddas N., Lashkaripour G.R., Dehghani. M., 2019. Geological parameters affected land subsidence in Mashhad Plain, north-east of Iran. Environ. Earth Sci. 78, 1-12 (in Persian).

Todd, D.K., 1980. Ground water hydrology, 2d ed.: New York, John Wiley, 535

Ty, T.V., Minh, H.V.T., Ram Avtar, R., Kumar, P., Hiep, H.V., Kurasaki, M., 2021. Spatiotemporal variations in groundwater levels and the impact on land subsidence in CanTho, Vietnam. Groundwater Sustain. Develop. 15, 100680.
Waltham, A.C., 1989. Ground subsidence. Blackie & Son Limites.
Yu, H., Gong, H., Chen, B., Liu, K., Gao, M., 2020. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 738, 139405.
Zarei, K., Rasulzadeh, A., Siddiqui, M., Ahmadzadeh, GH., Ramezani Moghadam, J., 2019. Determining the relationship between land subsidence and groundwater level drop with two methods of radar interferometry and GPS fixed station, case study: Selmas Plain. J. Irriga. Water Engineer. Iran 11(1), 168-182 (in Persian).
Zhu, L., Zhua, L., Gonga, H., Chen, Y., Wang, Sh., Ke, Y., Guo, G., Li, X., Chen, B., Wang, P., Teatini, P., 2020. Effects of water diversion project on groundwater system and land subsidence in Beijing, China. Engineer. Geo. 276, 105763.