با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی آبخیزداری گرایش آب، گروه مرتع و آبخیز، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

2 دانشیار، گروه مرتع و آبخیز، دانشکده منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

چکیده

مقدمه
ناهمگنی موجود در آبخیزها و غیر‌‌خطی بودن رفتارهای هیدرولوژیکی، شناخت کامل روابط موجود در آنها را بسیار پیچیده و مشکل ساخته است. از این رو، ارزیابی این سیستم‌‌ها، نیاز به فرایند مدل‌‌سازی دارد. با توجه به توسعه زبان‌های برنامه‌‌نویسی و ارائه الگوریتم‌های بهینه و کارا جهت حل مسائل دیفرانسیلی در چند دهه اخیر، مدل‌های هیدرولوژیکی/هیدرولیکی جایگاه خاصی در مطالعات هیدرولوژی پیدا کرده و بر این اساس، به‌کارگیری مدل‌‌های شبیه‌‌سازی بارش-رواناب، برای پیش‌‌بینی سیل مورد توجه محققین قرار گرفته است. این امر سبب شده تا مدل‌های متنوعی جهت شبیه‌‌سازی فرایند بارش-رواناب توسعه یابند. یکی از مدل‌‌های موفق در این زمینه، مدل TOPKAPI-X است. این مدل در دهه 90 میلادی در دانشگاه بولونیا توسط پروفسور Todini به‌صورت یک مدل بارش-رواناب توزیعی مکانی قابل کاربرد در سطح حوزه‌ آبخیز توسعه داده شد. از ویژگی‌های مهم مدل‌های توزیعی مکانی این است که می‌توان نتایج شبیه‌سازی مدل را در هر نقطه از حوزه ‌‌آبخیز استخراج نموده و بر خلاف مدل‌های یکپارچه که کل حوزه‌‌ آبخیز را یک واحد در نظر می‌گیرند، اجازه تفکیک‌‌بندی در هر نقطه از حوضه را می‌دهد. بنابراین، در این پژوهش بعد از واسنجی و اعتبارسنجی مدل فیزیکی-توزیعی TOPKAPI-X در حوزه‌‌‌ آبخیز گاماسیاب، نسبت به بهینه‌‌سازی مدل در منطقه پژوهش جهت برآورد دبی روزانه اقدام می‌‌شود.
 
مواد و روش‌‌ها
حوزه‌‌ آبخیز گاماسیاب در غرب کشور و در نواحی شمالی رشته کوه زاگرس، در شمال حوضه سد کرخه و عمدتاً در محدوده استان‌‌های همدان و کرمانشاه قرار دارد. مناطق کوهستانی این حوضه بیشتر در قسمت‌های شمالی و جنوبی متمرکز شده‌اند و مناطق پست و جلگه‌ای آن بیشتر در بخش‌های میانی و جنوب غربی حوضه قرار دارند. در این پژوهش از مدل TOPKAPI-X برای شبیه‌سازی رواناب در حوزه‌‌‌آبخیز گاماسیاب استفاده شد. برای این منظور، ابتدا مرز حوضه با استفاده از مدل رقومی ارتفاعی (DEM) با وضوح 30 متر، نقشه کاربری اراضی، بافت خاک، شبکه آبراهه حوزه ‌‌آبخیز و مولفه‌‌های اقلیمی در مدل TOPKAPI-X وارد شد. پس از معرفی مکان حوضه، از محل خروجی حوضه (ایستگاه هیدرومتری) برای شبیه‌‌سازی جریان استفاده شد. در این مدل بارش-رواناب، داده‌‌های سری زمانی پیوسته در گام زمانی روزانه در نظر گرفته شد. برای اجرای مدل در حوضه، سری زمانی دبی، بارش و دمای روزانه در دوره آماری 21 ساله در 13 ایستگاه هواشناسی و یک ایستگاه هیدرومتری داخل و خارح حوضه طی سال‌‌های 1999 تا 2020 بهره‌‌ برده شد. پس از چندین بار اجرای مدل، هر بار پارامترهای کلی مدل به‌صورت دستی و سعی و خطا تغییر می‌‌کرد تا در نهایت، با در نظر گرفتن مقادیر مناسب معیارهای ارزیابی ناش-ساتکلیف و اریب مدل برای حوضه، مقادیر بهینه پارامترهای مدل به‌دست آمد.
 
نتایج و بحث
این پژوهش، به‌منظور تحلیل بارش-رواناب یکی از زیرحوضه‌‌های اصلی حوضه آبخیز سد کرخه با استفاده از مدل TOPKAPI-X در مقیاس زمانی روزانه انجام شده است. در محیط نرم‌افزار TOPKAPI-X با استفاده از نقشه‌‌های ورودی و داده‌‌های مشاهداتی بارش، دما و دبی، واسنجی مدل انجام شد. مقایسه ظاهری هیدروگراف‌‌های مشاهداتی و شبیه‌‌سازی شده، امکان ارزیابی کلی و سریع دقت مدل‌‌ها را فراهم می‌‌کند. نتایج گرافیکی مقایسه دبی حاصل از اجرای مدل TOPKAPI-X با پارامترهای واسنجی شده و دبی اندازه‌‌گیری شده در حوضه گاماسیاب نشان داد که این مدل، توانایی خوبی در برآورد دبی روزانه این حوضه را دارد. اما در برخی موارد دبی‌‌های شبیه‌‌سازی شده بیشتر از دبی مشاهده شده است. چهار معیار NSE، R، BIAS و RMSE برای ارزیابی مدل استفاده شده است. برای حوزه آبخیز گاماسیاب مقدار معیار ناش-ساتکلیف در دوره واسنجی (2014-1999) برابر 0.697 و در دوره اعتبارسنجی (2020-2014) برابر 0.660 محاسبه شد. بنابراین، می‌‌توان نتیجه گرفت که این مدل در حوضه مورد مطالعه، در شبیه‌‌سازی جریان عملکرد خوبی دارد.
 
نتیجه‌‌گیری
اهمیت مدل‌‌های هیدرولوژیکی برای مدیریت منابع آب، ارزیابی کیفیت مطالعات اجرایی و درک فرایندهای هیدرولوژیکی کاملاً مشخص است. مدل‌‌های هیدرولوژیکی ابزارهای مهمی هستند که به دانشمندان و همچنین سیاستگذاران اجازه می‌‌دهد تا بر اساس شبیه‌‌سازی رفتار حوضه، تصمیم‌‌گیری کنند. بنابراین، با توجه به افزایش تقاضا برای آب و تأثیر تغییرات آب و هوایی، شبیه‌‌سازی هیدرولوژیکی توسط مدل‌‌ها از ابزارهای مدیریت آب در آینده خواهند بود. نتایج مطالعه حاضر نشان داد که مدل TOPKAPI-X پتانسیل بالایی در شبیه‌سازی رواناب در حوزه‌‌‌آبخیز انتخابی دارد. بنابراین، با توجه به قابلیت‌‌های آن، استفاده از این محیط به عنوان یک ابزار مدل‌‌سازی برای حوزه‌‌های آبخیز پیشنهاد می‌‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of TOPKAPI-X distributed hydrological model in simulating daily discharge in Gamasiab Basin

نویسندگان [English]

  • mohammad mahdi artimani 1
  • Hossein Zeinivand 2
  • Nasser Tahmasebipour 2

1 PhD Student, Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran

2 Associate Professor, Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University. Khorramabad, Iran

چکیده [English]

Introduction
Due to the heterogeneity in watersheds and the non-linearity of hydrological behaviors, it is very complicated and difficult to fully understand the relationships within watersheds. Therefore, in evaluating these systems, a modeling process is necessary. Over the last few decades, hydrological/hydraulic models have become essential in hydrology studies due to the development of programming languages and the provision of optimal and efficient algorithms for solving differential problems. The application of rainfall-runoff simulation models for flood events has been extensively studied by researchers in the field of water and soil protection, leading to the development of various models to simulate rainfall-runoff processes. One of the successful models in this field is the TOPKAPI-X model. This model was created in the 1990s at the University of Bologna by Professor Todini as a distributed rainfall-runoff model in watersheds. An important feature of distributed models is their ability to simulate components at any point of the watershed, allowing results to be extracted at any required point. Unlike lumped models that consider the entire watershed as a single unit, distributed models allow spatial distribution at any point in the watershed. Therefore, in this research, after calibrating and validating the TOPKAPI-X physical-distributed model in the studied basin, the model was optimized for flood estimation.
 
 
Materials and methods
The Gamasiab basin is located in the west of Iran, in the northern region of the Zagros mountain ranges, to the north of the Karkheh dam basin, and primarily within the territories of Hamadan and Kermanshah provinces. The mountainous regions of this basin are mainly concentrated in the northern and southern parts, while its lowlands and plains are mostly located in the middle and southeastern parts of the basin (Ministry of Energy, 2014). In this research, the TOPKAPI-X model was used to simulate floods in the Gamasiab watershed. First, the watershed boundary was delineated using a digital elevation model (DEM) with a resolution of 30 meters. Land use maps, soil texture, watershed network, and climatic components were entered into the TOPKAPI-X model. The outlet location of the basin (hydrometric station) was used to simulate the flow using the TOPKAPI-X distributed hydrological model. Continuous time series data on a daily time step were used in this rainfall-runoff model. Specifically, daily rainfall data from 13 rain gauge stations and temperature data from 4 synoptic stations during the statistical period (1999 to 2020) were used to simulate the flow. After running the model several times, the general parameters were manually adjusted each time until the optimal values of the general parameters were obtained by considering the appropriate values of the evaluation criteria (NS and Bias) for the basin.
 
 
Results and discussion
This research was conducted to analyze the flood discharge of one of the main sub-basins of the Karkheh dam basin using the TOPKAPI-X model on a daily time scale. In the TOPKAPI-X software environment, simulations were performed during the calibration period using input maps and observational rainfall, temperature, and discharge data. A visual comparison of the observed and simulated hydrographs allows for a general and quick evaluation of the model's accuracy. The graphical results of the comparison between the discharge generated by the TOPKAPI-X model with the calibrated parameters and the measured discharge in the Gamasiab basin were presented. The TOPKAPI-X model has the ability to estimate the maximum daily flow rates of the Gamasiab basin; however, some of the simulated flow rates are higher than the observed flow rates. Four criteria—NSE, R, BIAS, and RMSE—were used to evaluate the model. The evaluation results of the TOPKAPI-X model indicate the accuracy of flow simulation, with a Nash-Sutcliffe criterion of 0.697 during the calibration period (1999-2014) and 0.660 during the validation period (2015-2020) for the Gamasiab basin. Therefore, it can be concluded that this model has good performance for flow simulation.
 
 
Conclusions
The importance and usefulness of hydrological models for water resources management, understanding hydrological processes, and conducting impact assessment studies is clear. Hydrological models are crucial tools that enable scientists and policymakers to make informed decisions based on simulations of watershed behavior. Considering the increasing demand for water and the impact of climate change, hydrological simulation will be one of the essential methods for future water management. The results of this study showed that the TOPKAPI-X model has potential in simulating runoff in the selected basin. Due to the capabilities of the TOPKAPI-X distributed hydrological model, this software is recommended as a modeling tool for other basins.

کلیدواژه‌ها [English]

  • Hydrological simulation
  • Model calibration
  • Peak discharge
  • Rainfall-runoff
  • Spatially distributed model
Andres, E.O., Coccia, G., 2013. Towards a better representation of the hydrological processes the model TOPKAPI-X. International Symposium on Distributed Hydrological Modelling, University of Bologna, 5-7 June 2013, Napoli, Italy.
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M., Srinivasan, J., Santhi, R.C., Harmel, R.D., van Griensven, A., Van Liew, M., Kannan, W.N., Jha, M.K., 2012. SWAT: Modeluse, Calibration, and Validation. American Soci. Agricul. Biologi. Engineer. 55(4), 1491-1508.
Artimani, M.M., 2015. Quantitative analysis of sensitivity to hydrological drought using SWAT and WetSpa models in Gamasiab Watershed. Master's thesis, Lorestan University (in Persian).
Artimani, M.M., Zainiwand, H., Tahmasabipour, N., 2016. Evaluation of SWAT model in determining water balance components of Gamasiab Watershed. J. Rain Catchment Surface Syst. 2(15), 51-64 (in Persian).
Artimani, M.M., Zainiwand, H., Tahmasabipour, N., 2018. Evaluating the effectiveness of SRM and HBV models in simulating runoff caused by snowmelt in Bojin watershed. Iran's Water Resou. Res. 15(2), 241-228 (in Persian).
Baghel, D., Gaur, A., Karthik, M., Dohare, D., 2019. Global trends in environmental flow assessment: an overview. J. The Institu. Engin. 100 (2), 191-197.
Bartholmes, J., Todini, E., 2005. Coupling meteorological and hydrological models for flood forecasting. Hydrol. Earth Syst. Sci. Discus. 9(4), 346-333.
Cantoni, E., Tramblay, Y., Grimaldi, S., Salamon, P., Dakhlaoui, H., Dezetter, A., Thiemig, V., 2022. Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models. J. Hydrol: Regional-Studies. 42(11), 111-138.
Chu, T., Shirmohammadi, A., Montas, H., Sohrabi, T., 2002. Modeling watershed nonpoint source pollution on piedmont physiographic region using SWAT. ASAE Meeting paper No: 022040.Ciarapica, L., Todini, E., 2002. TOPKAPI: A model for the representation of the rainfall-runoff process at different scales. Hydrol. Process. 16, 207-229.
Coccia, G., Mazzetti, C., Ortiz, E., Todini, E., 2009. Application of the topkapi model within the dmip 2 project. Proceedings of the 23rd Conference on Hydrology, San Antonio, TX, USA, 10-12 January, 2009.
Croke, BM., Andrews, W., Spate, F., Cuddy, J., 2005. IHACRES user guide. Technical Report 2005/19. Second ed. ICAM, School of Resources. Environment and Society. The Australian National University. Canberra.
Ding, Z. Lü. H., Ahmed, N., Zhu, Y., Gou, Q., Wang, X., Liu, E., Xu, H., Pan, Y., Sun, M., 2022 . Soil moisture data assimilation in MISDc for improved hydrological simulation in upper Huai River Basin, China. Water. 14(21), 34-76.
Hali-Saz, A., Ahmadi Dost, B., Kamangar, Ameli, A., 2016. Investigating the effect of spatial scale change in flood estimation, a case study: Jamash Watershed, Hormozgan Province, J. Hydrol. Sci. 20(7), 1-13 (in Persian).
Hamedan Agricultural and Natural Resources Research Cente, 2009. information layers related to soil and land using GIS system in Hamadan Province.
Harun, S., Ahmat, N., Kassim, A., 2002. Artificial neural network model for rainfall-runoff relationship. J. Technol. 37(2), 1-12.
Hughes, J.D., Silberstein, R.P., Grigg, A., 2013. Extending rainfall-runoff models for use in environments with long-term catchment storage and forest cover changes. In MODSIM2013, 20th International Congress on Modelling and Simulation, 231-243.
Huo, Z., Feng, S., Kang, S., Huang, G., Wang, F., Guo, P., 2012. Integrated neural networks for monthly river flow estimation in arid Inland Basin of Northwest China. J. Hydrol. 420(2), 159-170.
Janabi, F., Ongdas, N., Bernhofer, C., Benisch, J., Krebs, P., 2021. Assessment of TOPKAPI-X applicability for flood events simulation in two small catchments in Saxony. Hydrol. 8, 109.
Khosravi, M., Saljagah, A., Mohseni Saravi, M., 2019. Estimation of daily runoff in basins without statistics Using regionalization of parameters Model HBV, a case study: Central Alborz. J. Water Soil Sci. Isfahan University of Technology, Isfahan, Iran, 43(12), 11-21 (in Persian).
Knebl, M., Yang, Z.L., Hutchison, K., Maidment, D., 2005. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manage. 75(4), 336-325.
Lee, K.T., Huang, J.K., 2016. Influence of storm magnitude and watershed size on runoff nonlinearity. J. Earth Syst. Sci. 125(4), 794-777.
Li, J., Lei, K., Zhang, T., Zhong, W., Kang, A., Ma, Q., 2020. A framework for event-based flood scaling analysis by hydrological modeling in data-scarce regions, Hydrology Research, in Press.
Liu, J., Chen, X., Zhang, J., Flury, M., 2009. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process. 23, 1337-1348.
Liu, Z., Martina, M.L.V., Todini, E., 2005. Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the Upper Xixian Catchment. Hydrol. Earth Syst. Sci. Discuss. 9, 347-364.
Liu, Z., Todini, E., 2005. Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrol. Process. 19, 1983-2006.
Lupakov, S.Y., Bugaets, A.N., Gonchukov, L.V., Motovilov, Yu. G., Sokolov, O.V., Bugaets, N.D., 2023 . Using the GR4J conceptual model for runoff simulation in the Ussuri River Basin. Russ. Meteorol. Hydrology. 48(2), 128-137.
Mahdi-Nasab, M., 2017. Rainfall-runoff modeling of Kashkan River catchment based on statistical models, J. Geogra. Environ. Plan. 58(2), 67-84 (in Persian).
Ministry of Energy, Water and Sewerage Deputy, Water and Sewerage Planning Office, 2013. Studies on updating the country's comprehensive water plan, volume five, final report on water resource planning modeling of the Karkheh catchment area, Bahan Dam Company.
Mojerlo, F., Fazl Oli, R., Emadi, A., 2018. Application of IHACRES model to evaluate the effects of climate change on watershed discharge Abriz Tajan. Irri. Drain. J. Iran. 1(13), 129-141.
Momeneh, S., 2022. Performance comparison of Artificial Intelligence models with IHACRES  model in streamflow modeling of the Gamasiab River catchment. Water Soil Manage. Model. 2(3), 1-16.
Mouelhi, S., Michel, C., Perrin, C., Andréassian, V., 2006. Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited. J. Hydrol. 328 (1), 283-296.
Najafinejad , A., Heravi, H., Bahremand, A., Zeinivand, H., 2020. Simulation of climate change on river hydrograph using WetSpa Model, case study: Taleghan Watershed Alborz Province. J. Spat. Analys. Environ. Hazards. 7(1), 121-134
Natural Resources and Watershed Management Organization., 2021. Vegetation map. https://frw.ir/uploads/f vegetation map.
Nguyen, H., Recknagel, F., Meyer, W., Frizenschaf, J., Ying, H., Gibbsd, M., 2019. Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes. Sci. The Total Environ. 662(3), 254-265.
Nohegar, A., Motamednia, M., Malekian, A., 2016. Daily river flood modeling using genetic programming and artificial neural network, case study: Amameh Representative Watershed. Physi. Geog. Res. 48(3), 367-383 (in Persian).
Peng, D., Zhijia, L., Zhiyu, L., 2008. Numerical algorithm of distributed TOPKAPI model and its application. Water Sci. Eng. 1, 14-21.
Rwasoka, D.T., Madamombe, C.E., Gumindoga, W., Kabobah, A., 2013. Calibration, validation, parameter indentifiability and uncertainty analysis of a 2–parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Physi. Chemis. Earth. 67(3), 36-46.
Schuol, J., Abbaspour, K.C., Srinivasan, R., Yang, H., 2008. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 352, 30-49.
Shahedi, K., Forotan Danash, M., 2022. Flow simulation using the wetspa model in the Ghorchai Watershed. Hydrogeomorphol. 23(9), 25-42.
Sinclair, S., Pegram, G.G.S., 2010. A comparison of ASCAT and modelled soil moisture over South Africa, using TOPKAPI in land surface mode. Hydrol. Earth Syst. Sci. 14, 613-626.
Sinclair, S., Pegram, G.G.S., 2013. A sensitivity assessment of the TOPKAPI model with an added infiltration module. J. Hydrol. 479, 100-112.
Spruill, C.A., Workman, S.R., Taraba, J.L., 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. Americ. Soci. Agricul. Engin. 43(6), 1439-1431.
Vakili, S., Moghadamnia, A.R., 2022. Comparative investigation of rainfall-runoff model-HEC HMS is estimated by different experimental methods flood. Iran-Watershed Manage. Sci. Engin.16(58), 32-41.
Viviroli, D., Zappa, M., Gurtz, J., Weingartner, R., 2009. An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ. Model. Soft. 24(10), 1209-1222.
 Wang, X., Melesse, A.M., 2005. Evaluation of the SWAT models snowmelt hydrology in a northwestern Minnesota Watershed. Trans. ofthe ASAE. 48(4), 1-18.
Yang, Q., Meng, F., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P., 2009. Assessing the impact of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agri. Ecosyst. Environ. 132, 23-31.
Zainali, M., Golabi, M.R., Sharifi, M.R., Hafezparast Maudet, M., 2019. Evaluation of artificial intelligence models in river flow modeling, case study: Gamasiab River. Manage. Engineering Watershed J. 11, 941-954.
Zainiwand, H., 2014. Analysis of the effect of different amounts of daily precipitation on the amount of runoff in Qarasu Watershed in Kermanshah Province. Eco-Hydrol. J. 1(2).
Zarei, M., Ghanbarpoor, M.R., 2009. River flow simulations using rainfall-runoff models IHACRES, Kasilian River of Watershed Iran. Ecohydrol. 8, 20-11.
Zarezadeh Mehrizi, S., Khoorani, A., Bazrafshan, J., Bazrafshan, O., 2018. Assessing the efficiency of SWAT model for runoff simulation in Gamasiyab basin. J. Range Watershed Manage. 70(4), 881-893.
Zhang, X., Water, D., Ellis, R., 2013. Evaluation of Simhyd, Sacramento and GR4J rainfall runoff models in two contrasting great barrier reef catchments. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1-6 December 2013, 3260-3266.