با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب و هواشناسی، گروه جغرافیایی طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد تمام، گروه جغرافیایی طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانش آموخته دکتری، گروه جغرافیایی طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانش اموخته دکتری، گروه جغرافیایی طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

مقدمه
تغییرات آب و هوایی با تغییر بارش و دما به چرخه هیدرولوژیک، منابع آب قابل دسترس و تقاضای آب و انرژی اثر می‌‌گذارد. در این راستا، پیش‌بینی تغییرات بارش و دما به‌وسیله مدل‌‌های گزارش ششم تغییر اقلیم به‌دلیل افزایش دقت در برونداد آنها می‌‌تواند کمک شایانی برای برنامه‌‌ریزی و مدیریت منابع آب در دوره آتی باشد. این مدل‌‌ها قادر به مدل‌سازی پارامترهای اقلیمی با استفاده از سناریوهای تأیید شده هیات بین‌الدول تغییر اقلیم (IPCC) برای یک دوره بلندمدت هستند. هم اکنون در سطح جهانی مراکز و مدل‌‌های گوناگونی برای مدل‌‌سازی وضعیت اقلیم دهه‌‌های آینده کره زمین با استفاده از سناریوهای انتشار، ساختار فیزیکی و محاسباتی گوناگونی وجود دارد. شبیه‌سازی‌های حاصل از مدل‌‌های گردش عمومی جو که بخشی از CMIP6 هستند، مبنایی برای بسیاری از نتیجه‌‌گیری‌‌های هیئت بین‌‌الدول در ارتباط با تغییرات اقلیمی آینده است. از این داده‌‌ها به‌صورت مستقیم و یا پس از ریزمقیاس‌‌نمایی برای ارزیابی تغییرات اقلیمی آینده در مقیاس‌‌های محلی و منطقه‌‌ای استفاده می‌‌شود. این پژوهش، سعی در تحلیل و پیش‌بینی روند بارش و دمای کمینه و بیشینه استان آذربایجان شرقی تحت شرایط تغییر اقلیم در دوره 2021 تا 2100 دارد.
 
مواد و روش‌‌ها
این پژوهش برای بررسی و پیش‌بینی بارش و دمای کمینه و بیشینه و تعیین روند آنها با استفاده از مدل‌‌های اقلیمی گزارش ششم CMIP6)) گردش عمومی جو و شبیه‌ساز صحیح اریبی در دوره آتی (2021 تا 2100) در ایستگاه‌های تبریز، اهر، جلفا، مراغه و میانه انجام شده است. برای ارزیابی روند بارش، دما بیشینه و کمینه استان تا پایان قرن 21، از داده‌‌های 12 مدل (ACCESS-CM2، BCC-CSM2-MR، CESM2، CNRM-CM6-1، CanESM5، MIROC6، MRI-EMS2-0، IPSL-CM6A-LR، GISS-E2-1-G، HadGEM3-GC31- LL، NESM3 و NOR-ESM2-MM) از مجموعه مدل‌‌های در دسترس CMIP6 با سه سناریوی (SSP1-2.6، SSP2-4.5 و SSP5-8.5) استفاده شد. برای شناسایی بهترین مدل برای شبیه‌سازی داده‌های بارش و دما دوره آتی (2021 تا 2100) از روش کلینگ-کوپتا استفاده شد و داده‌های تاریخی هر مدل را با داده‌‌های مشاهداتی (2018-1989) ایستگاه‌‌های منتخب مورد ارزیابی قرار گرفت. در ادامه، از برون داد تصحیح اریبی شده مدل‌‌های اقلیمی برای پیش‌نگری داده‌های تحت سناریوهای SSP در دوره آینده استفاده شد. در مرحله آخر، میانگین سری‌‌های زمانی بارش و دمای کمینه و بیشینه دوره آینده در هر سناریو با ترکیب نتایج مدل‌‌ها در دوره پایه (تاریخی) مقایسه شدند تا میزان تغییرات دما کمینه، دمای بیشینه و بارش 80 سال آینده (2021 تا 2100) استان آذربایجان شرقی تعیین شود.
 
نتایج و بحث
در این پژوهش، عملکرد 12 مدل اقلیمی از مجموعه مدل‌های گزارش ششم تغییر اقلیم در بازه تولید داده‌‌های اقلیمی در زمان گذشته (1989 تا 2018) بررسی شد. بر اساس نتایج بررسی عدم قطعیت دو مدل BCC-CSM2-MR و MIROC6 که بهترین شبیه‌سازی‌ را برای بارش و دما داشتند، برای پیش‌بینی  پارامترهای بارش و دمای کمینه و بیشینه با استفاده از تصحیح اریبی برای دوره آینده (2021 تا 2100) تحت سه سناریوی خوش‌بینانه، متوسط و بدبینانه در استان آذربایجان شرقی مورد استفاده قرار گرفت و درنهایت متوسط تغییرات دما بیشینه و کمینه و بارش در افق 2021 تا 2100 به‌صورت نقشه و نمودار ارائه شد. نتایج نشان داد که در تمام سناریوهای انتشار، دمای سالانه افزایش و بارندگی سالانه کاهش پیدا خواهد کرد. دمای میانگین بیشینه سالانه سه سناریوی SSP در ایستگاه‌‌های منتخب (تبریز، مراغه، میانه، جلفا و اهر) به‌ترتیب 2.1، 1.2، 3.4، 5.2 و 1 درجه سلسیوس و دمای کمینه سالانه به‌ترتیب سه، 2.9، 3.3، شش و 1.4 درجه سلسیوس افزایش و بارش به‌طور میانگین در سه سناریوی (SSP1-2.6، SSP2-4.5 و SSP5-8.5) در ایستگاه منتخب به‌ترتیب 3.2، 2.9، 3.1، 3 و 2.4 درصد کاهش خواهد یافت.
 
نتیجه‌‌گیری
نتایج این پژوهش بیانگر این امر است که از بین ۱۲ مدل CMIP6 مورد ارزیابی در این پژوهش، دو مدل بهینه BCC-CSM2-MR و MIROC6 به‌خوبی توانسته‌‌اند، شبیه‌سازی‌ پارامترهای بارش و دما را برای دوره‌‌های آینده شبیه‌سازی کنند و می‌‌توان با صحت بالا از این داده‌‌های شبیه‌‌سازی شده برای آینده‌‌نگری مناسب‌تر از شرایط آب و هوایی در دوره‌‌های آتی استفاده کرد و به کمک آن مدیریت کلان آینده را در زمینه‌‌های بهره‌وری مناسب‌‌تر از منابع و به‌خصوص منابع آبی ارتقاء بخشید.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the trend of precipitation and minimum and maximum temperatures of East Azarbaijan Province using the Coupled Model of the Sixth Report (CMIP6)

نویسندگان [English]

  • Nazli Zenozi Alamdari 1
  • Behrouz Sobhani 2
  • Mehdi Eshahi, 3
  • Masihallah Mohammadi 4

1 PhD Student of Hydrology and Meteorology, Department of Natural Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Natural Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 PhD Student, Department of Natural Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

4 PhD Student, Department of Natural Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

Introduction
Climate is a complex system that is changing primarily due to the increase in greenhouse gases. To study the effects of climate change on agricultural, hydrological, and environmental systems, general circulation models (GCMs) are used to simulate climate variables. These models, based on approved Intergovernmental Panel on Climate Change (IPCC) scenarios, enable the modeling of climate parameters over extended periods. Globally, various centers and models simulate future climatic conditions using different emission scenarios, physical structures, and computational approaches. The simulations from CMIP6 GCMs form the foundation for many IPCC conclusions regarding future climate changes. These data are utilized directly or after downscaling to evaluate local and regional climate changes (IPCC, 2021). This study analyzes and predicts trends in precipitation and minimum and maximum temperatures in East Azerbaijan Province under climate change conditions from 2021 to 2100.
 
Materials and methods
This study aims to investigate precipitation and minimum and maximum temperatures and their trends from 2021 to 2100 across stations in Tabriz, Ahar, Jolfa, Maragheh, and Miyaneh. Data from 12 CMIP6 models (ACCESS-CM2, BCC-CSM2-MR, CESM2, CNRM-CM6-1, CanESM5, MIROC6, MRI-ESM2-0, IPSL-CM6A-LR, GISS-E2-1-G, HadGEM3-GC31-LL, NESM3, and NorESM2-MM) were used under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The Kling-Gupta Efficiency (KGE) method was applied to identify the best models for simulating precipitation and temperature by comparing historical model data (1989–2018) with observed data from selected stations. Bias correction of model outputs was then used to forecast climate variables under the SSP scenarios. Finally, the mean time series of precipitation and minimum and maximum temperatures for the future period were compared with historical data to quantify changes over the 80-year horizon (2021–2100) for East Azerbaijan Province.
 
Results and discussion
The performance of 12 CMIP6 climate models was evaluated for generating past and present climate data (1989–2018). Based on uncertainty analysis, the BCC-CSM2-MR and MIROC6 models were identified as the best for simulating precipitation and temperature. These models were used, with bias correction, to predict precipitation and minimum and maximum temperatures for the future period (2021–2100) under optimistic, moderate, and pessimistic scenarios for East Azerbaijan Province. The results revealed that in all scenarios, annual temperatures are projected to increase while annual precipitation will decrease. Annual maximum temperatures across the selected stations are expected to increase by 0.57–6.41°C, while annual minimum temperatures will rise by 0.46–4.89°C. Precipitation is projected to decrease by 2.3% to 9.18%. The highest temperature increase and precipitation decrease are expected at Jolfa and Tabriz stations, respectively.
Conclusions
This study demonstrates that CMIP6 models effectively simulate future climate parameters and align well with historical climate data for East Azerbaijan Province. The high accuracy of these simulations makes them suitable for forecasting future climatic conditions and facilitating macro-level management strategies. Such strategies can enhance resource productivity, particularly in water resource management, to address the challenges posed by climate change.
 

کلیدواژه‌ها [English]

  • BCC-CSM2-MR model
  • Climate change
  • MIROC6 model
  • Rainfall
  • SSP emission scenario
Ahangir, M.H., Gharadaghi, L., 2022. Assessing the Performance of SDSM models in downscaling annual precipitation and temperature values simulated via CANESM2 model: a case study of East Azerbaijan Province. Desert Ecosys. Engin. 10, 45-60 (in Persian).
Alami, M.T., Aghabalaee, B., Ahmadi, M.H., Farzin, S., 2015. Optimum allocation of water resources by using system dynamics. J. Water Engin. 23, 99-110.
Ansari, S., Dehban, H., Zareian, M., Farokhnia, A., 2022. Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iran. Water Res. J. 16, 11-24. (in Persian).
Chen, W., Jiang, Z., Li, L., 2011. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate. 24, 4741-4756.
Dehghani, M., Kavian, A., Habibnejad, M., Ghorbani, M., Jafarian, Z., 2021. An assessment of uncertainty of regional climate change models, error correction methods and forecasting climate change in Birjand Township. JWMR. 12, 42-53 (in Persian).
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Develop. (Online), 9 (LLNL-JRNL-736881).
Eyring, V., Bony, S., Meehl, G.A., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Develop. 9(19), 37-58.
farajnia, A., Moravej, K., 2020. Agro climatic zoning of Saffron culture in East Azarbayjan Province. J. Saffron Res. 7, 251-267 (in Persian).
Fentaw, F., Hailu, D., Nigussie, A., Melesse, A., 2018. Climate change impact on the hydrology of Tekeze Basin, Ethiopia: Projection of Rainfall-Runoff for Future Water Resources Planning, Water Conserv. Sci. Engin. 3(4), 267-278.
Garcia, A., Cuesta-Valero, F.J., Beltrami, H., Smerdon, J.E., 2019. Characterization air and ground temperature relationships within the CMIP5 historical and future climate simulations. J. Geophysi. Res.: Atmosph. 124, 3903-3929.
Gidden, M., Riahi, K., Smith, S., Fujimori, S., Luderer, G., Kriegler, E., Calvin, K., 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Develop. Discus. 12, 1443-1475.
Gunavathi, S., Selvasidhu, R., 2021. Assessment of various bias correction methods on precipitation of regional climate model and future projection. Research Square.
Iranshahi, M., Ebrahimi, B., Yousefi, H., Moridi, A., 2023. Investigating the effects of climate change on temperature and precipitation using neural network and CMIP6, case study: Aleshtar and Khorramabad Stations. Water Irriga. Manage. 12, 821-845 (in Persian).
Jahangir, M.H., Gharadaghi, L., 2022. Assessing the performance of SDSM Models in downscaling annual precipitation and temperature values simulated Via CANESM2 Model: a case study of East Azerbaijan Province. Desert Ecosys. Engin. 10, 45-60 (in Persian).
Jahangir, M.H., Mohammadi, A., 2018. Climatic zoning of East Azerbaijan by LARS-WG down scaling model for 2011-2065. Geograph. (Regional Planning) 8, 119-130 (in Persian).
Jato-Espino, D., Sillanpää, N., Charlesworth, S.M., Rodriguez-Hernandez, J., 2019. A simulation-optimization methodology to model urban catchments under non-stationary extreme rainfall events. Environ. Model.  Software. 122, 103960.
Knoben, W.J., Freer, J.E.,  Woods, R.A., 2019. Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Sys. Sci. 23, 4323-4331.
McGinnis, S., Nychka, D., Mearns, L.O., 2015. A new distribution mapping technique for climate model bias correction. In Machine learning and data mining approaches to climate science. Springer, Cham. 91-99.
Nie, S., Fu, S., Cao, W., Jia, X., 2020. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theoreti. Applied Climatol. 1-16.
Nourani, V., Rouzegari, N., Molajou, A., Baghanam, A.H., 2020. An integratedsimulationoptimization framework to optimize the reservoir operation adapted to climate change scenarios. J. Hydrol. 587, 125018.
O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., Solecki, W., 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change. 42, 169-180.
O'Neill, B.C., Tebaldi, C., Vuuren, D.P.V., Eyring, V., Friedlingstein, P., Hurtt, G., Meehl, G.A., 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Develop. 9, 3461-3482.
Pachauri, R.K., Allen, M.R.,  Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. IPCC.
Patil, S.D., Stieglitz, M., 2015. Comparing spatial and temporal transferability of hydrological modelparameters. J. Hydrol. 525, 409-417.
Pedersen, J.T.S., Vuuren, D., Gupta, J., Santos, F.D., Jae Edmonds, J., Swart, R., 2022. IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022?. Global Environ. Change 75, 102538, ISSN 0959-3780.
Pooralihosein, S.S., Massah Bavani, A., 2013. Risk analysis and assessment of impacts of climate change on temperature and precipitation of East Azerbaijan in 2013-2022. J. Earth Space Physics. 39, 191-208 (in Persian).
Pooralihosein, S.H., Massah Bavani, A.R., 2013. Risk analysis and assessment of impacts of climate change on temperature and precipitation of East Azerbaijan in 2013-2022. J. Earth Space Physics. 39, 191- 208 (in Persian).
Qin, J., Su, B., Tao, H., Wang, Y., Huang, J., Jiang, T., 2021. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Frontiers Earth Sci. 15, 23-37.
Rezayi Zaman, M., Massah Bavani, A.R., Javadi, S., 2023. Evaluation of the effects of SSP scenarios of Coupled Model Intercomparison Project Phase 6 (CMIP6) on water resources and agricultural crop in Hashtgerd region with the approach of applying an adaptation strategy. J. Environ. Sci. Technol. 24, 93-107 (in Persian).
Rogelj, J., Popp, A., Calvin, K.V., Luderer, G., Emmerling, J., Gernaat, D., Tavoni, M., 2018. Scenarios towards limiting global mean temperature increase below 1.5 C. Nat. Climate Change 8, 325-332.
Semenov, M.A., 2008. Simulation of extreme weather events by a stochastic weather generator. Climate Res. 35, 203-212.
Shiferaw, H., Gebremedhin, A., Gebretsadkan, T., Zenebe, A., 2018. Modelling hydrological response under climate change scenarios using SWAT model: the case of Ilala watershed, Northern Ethiopia. Model. Earth Syst. Environ. 4, 437-449.
Tebaldi, C., Debeire, K., Eyring ,V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill,. B, Sanderson, B., van Vuuren, D., 2021. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Sys. Dynamics. 12, 253-293.
Teutschbein, C., Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456, 12-29.
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: An overview. Climatic Change. 109, 5-31
Yeboah, K.A., Akpoti, K., Kabo-bah, A.T., Ofosu, E.A., Siabi, E.K., Mortey, E.M., Okyereh, S.A., 2022. Assessing climate change projections in the Volta Basin using the CORDEX-Africa climate simulations and statistical bias correction. Environ. Challenges. 6, 1-18.
Zarrin, A., Dadashi Roudbari, A.A., 2020. Projection the long-term outlook iran future temperature based on the output of The Coupled Model Intercomparison Project Phase (CMIP6). J. Earth Space Physics. 46, 583-602 (in Persian).
Zarrin, A., dadashi-rodbari, A., Salehabadi, N., 2021. Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iran. J. Geophysi. 15, 35-54 (in Persian).
Zhang, X., Hua, L., Jiang, D., 2021. Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China. Atmosph. Oceanic Sci. Letters. 15, 100128.