با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 ستادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

2 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، فارس، ایران

3 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

4 محقق بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

چکیده

مقدمه
تبخیر و تعرق (ET)، یکی از مهم‌ترین عوامل موثر در چرخه هیدرولوژیکی است و تعیین‌کننده اصلی معادلات انرژی در سطح زمین است. برآورد تبخیر و تعرق برای هیدرولوژی، آبیاری، جنگل و مرتع و مدیریت منابع آب مهم است. تبخیر و تعرق، بیلان آب و انرژی خاک را که عمدتا در مدل‌های گردش عمومی و مدلسازی آب و هوا مورد استفاده قرار می‌گیرد، تحت تاثیر قرار می‌‌دهد. در نتیجه، پیش‌بینی جریان آب رودخانه، پیش‌بینی عملکرد محصول، سامانه‌های مدیریت آبیاری، کیفیت آب رودخانه/دریاچه همگی به سطوح تبخیر و تعرق بستگی دارند. به همین دلیل، برآورد دقیق بیلان آب ضروری است. مدل‌‌های متعددی برای تخمین تبخیر و تعرق با استفاده از روش‌‌های سنجش از دور توسعه یافته است. بررسی تحقیقات اخیر نشان می‌‌دهد که سنجش از دور و استفاده از تصاویر ماهواره‌‌ای توانایی بالایی در تخمین میزان تبخیر و تعرق واقعی دارد.
مواد و روش‌‌ها
هدف از این پژوهش، واسنجی الگوریتم METRIC در تخمین تبخیر و تعرق دشت سهرین-قره‌‌چریان است که تحت تاثیر پخش سیلاب قرار گرفته است. این روش به‌وسیله بسیاری از محققان در سراسر جهان برای تخمین تبخیر و تعرق استفاده شده است. از سوی دیگر، برآورد تبخیر و تعرق واقعی در دشت‌‌های متاثر از سیلاب، به‌ویژه پخش سیلاب بر آبخوان دشت سهرین- قره‌‌چریان از اهمیت بالایی برخوردار است. لذا، این پژوهش با هدف تخمین تبخیر و تعرق با استفاده از الگوریتم متریک در دشت سهرین-قره‌چریان به منظور مدیریت بهینه منابع آب در منطقه و مناطق با شرایط مشابه انجام شد. در این پژوهش، از داده‌‌های هواشناسی روزانه و ساعتی ایستگاه سینوپتیک فرودگاه زنجان از سال 2020 تا 2021 استفاده شد که این داده‌‌ها شامل کمینه و بیشینه دما، کمینه و بیشینه رطوبت، میانگین سرعت باد، ساعات آفتابی و فشار هوا بود. برای بررسی کاربرد الگوریتم متریک، تصاویر Landsat 8 برای سال آبی 1400–1399 دانلود و پیش‌‌پردازش و پردازش‌‌های لازم بر روی آن‌‌ها انجام شد. تصاویر Landsat در فواصل 16 روزه با وضوح مکانی 30 متر و از سایت سازمان زمین‌‌شناسی ایالات متحده (http://glovis.usgs.gov) به‌دست آمد. پس از پردازش تصاویر، شار خالص تشعشع سطح زمین و شار حرارتی زمین با استفاده از شارهای تشعشعی ورودی-خروجی از آلبدو، گسیل‌‌مندی، دمای سطح زمین و شاخص‌های گیاه به‌دست آمد. سپس، شار حرارتی محسوس با تعیین پیکسل‌‌های سرد و گرم محاسبه و در  آخر، نقشه‌‌های تبخیر و تعرق استخراج شد.
نتایج و بحث
نتایج نشان داد، با افزایش تراکم پوشش گیاهی، تبخیر و تعرق روزانه نیز افزایش می‌‌یابد. در ابتدای دوره رشد، دامنه تبخیر و تعرق بین 0.08 تا 4.97 میلی‌‌متر در روز تخمین زده شد در حالی که این مقدار در اواسط و اواخر فصل رشد به‌ترتیب در محدوده 0.086 تا 5.56 و 0.59 تا 9.57 میلی‌‌متر در روز تخمین زده شد. بر اساس نتایج، این پژوهش تبخیر و تعرق حاصل از مدل بیلان آب خاک و مدل متریک به‌ترتیب معادل 24115 و 25648 متر مکعب در سال برآورد شد. اعتبارسنجی نتایج مقدار تبخیر و تعرق حاصل از مدل متریک با مقدار تبخیر و تعرق واقعی حاصل از مدل بیلان آب خاک مقایسه شد که ضریب خطا معادل 5.97 درصد به‌دست آمد.
نتیجه‌‌گیری
با توجه به نتایج این پژوهش، مشخص شد استفاده از مدل‌‌های بیلان انرژی با بهره‌‌گیری از علم سنجش از دور امکان برآورد تبخیر و تعرق را به‌صورت منطقه‌‌ای فراهم می‌‌کند. از طرفی، درصد خطای محاسباتی نشان می‎دهد الگوریتم متریک برای برآورد ET در منطقه مورد مطالعه از دقت لازم برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Estimating the amount of evapotranspiration in the area affected by flood spreading using METRIC algorithm

نویسندگان [English]

  • ghobad rostamizad 1
  • Mojtaba Pakparvar 2
  • parviz abdinejhad 3
  • Zahra Abdollahi 3
  • jafar khalafi 4

1 Professor Assistant of Soil Conservation and Watershed Management Department, Zanjan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran

2 Professor Assistant of Soil Conservation and Watershed Management Department, Fars Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Fars, Iran

3 Professor Assistant of Soil Conservation and Watershed Management Department, Zanjan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran

4 Researcher of Soil Conservation and Watershed Management Research Institute, Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

چکیده [English]

Introduction
Evapotranspiration (ET) is one of the most important factors in the hydrological cycle and is a key determinant of energy equations on the earth’s surface. evapotranspiration estimates are important for hydrology, irrigation, forest and rangeland, and water resources management. The evapotranspiration drives the soil water-energy balance which is largely used in general circulation models and climate modelling. Consequently, river water flow forecasting, crop yield forecasting, irrigation management systems, river/lake water quality are all dependent on evapotranspiration levels. For this reason, it is essential to accurately estimate the water budget. Numerous models have been developed to estimate evapotranspiration using remote sensing methods. The review of recent research shows that remote sensing and the use of satellite images have a high ability to estimate the amount of actual evapotranspiration.
Material and method
The aim of this study is calibrating the METRIC algorithm in estimating evapotranspiration in the Sohrin-Qaracheryan Plain, which is affected by flood spreading. This method has been used by many researchers around the world to estimate evapotranspiration. On the other hand, estimating the actual evapotranspiration is of great importance in the plains affected by the flood, especially in the Sohrin-Qaracherian Plains flood spreading. Therefore, in this research was conducted to estimate evapotranspiration using the metric algorithm in the Sohrin-Qaracherian Plain, for the optimization management of water resources in the region and regions with similar conditions. In this research, were used of the daily and hourly meteorological data of Zanjan Airport synoptic station from 2020 to 2021. These the data included minimum and maximum temperature, minimum and maximum humidity, wind speed average, sunshine hours and air pressure. To check the application of metric algorithm, were downloaded Landsat 8 images for 2020-2021 years and were done necessary corrections and preprocessing on them. Landsat images are available at 16-day intervals with a spatial resolution of 30 m and were obtained from the United States Geological Survey website (http://glovis.usgs.gov). After the images processing, is obtained the albedo, surface emissivity, land surface temperature, plant indicators, incoming-outgoing radiation fluxes, net radiation flux and the soil heat flux. Next, the sensible heat flux is calculated by determining the hot and cold pixels. Finally, evapotranspiration maps are plotted. In addition, for a better comparison of the results, were compared of the layers related to vegetation index include soil heat flux and land surface temperature in the different stages of the growth period. After extracting these indices, the evapotranspiration map was extracted using ENVI software.
Result and discussion
Results show that daily evapotranspiration increases is directly related with increase in vegetation density. at the initial of the growth period, the range of evapotranspiration is estimated between 0.08 and 4.97 mm.d-1, while this value in the middle and late of the growing season is estimated in the range of 0.086 to 5.56 and 0.59 to 9.57 mm.d-1 respectively. Based on the results of this research evapotranspiration obtained from the soil water balance model and METRIC model were estimated as 24115 and 25648 m3, respectively. The results validation of evapotranspiration obtained from the metric model was compared with the actual evaporation and transpiration obtained from the soil water balance model, and the error coefficient was obtained equal to 5.97%.
Conclusion
According to the results of this research, it was determined that the use of energy balance models using the science of remote sensing provides the possibility of estimating evaporation and transpiration regionally. On the other hand, the calculation error percentage shows that the metric algorithm is accurate enough to estimate ET in the studied area.

کلیدواژه‌ها [English]

  • Validation؛ Satellite Images
  • Sohrin-Qaracheryan plain
  • Soil water balance model
Allen, R.G. 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.
Allen, R.G., Tasumi, M., Morse, A., Trezza, R. 2005. A landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig. Drainage Syst. 19(3-4), 251-268.
Allen, R.G., Tasumi, M., Morse, A., Trezza, R. 2007. Satellite-based energy balance for Mapping Evapotranspiration With Internalized Calibration (METRIC) model. J. Irrig. Drain. Eng. 133 (4), 380-394.
Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 229(1–2), 87–100.
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A.,  Holtslag, A.A.M. 1998. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL): 1. Formulation. J. Hydrol. 212-213, 198-212.
Betts, A.K., Ball, J.H. 1997. Albedo over the boreal forest. J. Geophys. Res., Atmosph. 102(D24), 28901-28909.
Chen, Y., He, L., Li, J., Zhang, S. 2018. multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Compute. Chem. Eng. 109, 216-235.
Cheng, X., He, L., Lu, H., Chen, Y., Ren, L. 2016. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J. Hydrol. 540, 412-422.
Derakhshannia, M., Dalvand, S., Asakereh, B., Ostad-Ali-Askari, K. 2020. Corrosion and deposition in Karoon River, Iran, based on hydrometric stations. Internat. J. Hydrol. Sci. Technol. Inderscience Publishers. 10(4), 334-345. 
Dirmeyer, P.A., Shukla, J. 1994. Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res. 99(D10), 20863-20877.
Elkatoury, A., Alazba, A., Abdelbary, A. 2020. Evaluating the performance of two SEB models for estimating ET based on satellite images in arid regions. Arab. J. Geosci. 13(2), 1-19.‏
Fattahi Nafchi, R., Raeisi Vanani, H., Noori Pashaee, K. 2021. Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds. Nat. Hazards 110, 1495-1505.
He, L., Chen, Y., Li, J. 2018b. A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. Resour. Conserv. Recycle. 133, 206-228.
He, L., Chen, Y., Zhao, H., Tian, P., Xue, Y.,  Chen, L. 2018a. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Sci. Total Environ. 627, 1585-1601.
Javadinejad, S., Eslamian, S.,  Askari, K.O.A. 2021. The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. IJHST 1 (1), 1.
Malik, A., Kumar, A., Kim, S.K., Karimi, M.H., Sharafati, V., Ghorbani, A., Al-Ansari, M.A., Salih, N., Yaseen, S.Q., Chau, Z.M. 2020. Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Eng. Appl. Compute. Fluid Mech. 14(1), 323-338.
Mondal, I., Thakur, S., Bandyopadhyay, J. 2019. Delineating lateral channel migration and risk zones of Ichamati River, West Bengal, India. J. Cleaner Product. Elsevier 244, 118740.
Mondal, I., Thakur, S., De. A., De, T.K. 2022. Application of the METRIC model for mapping evapotranspiration over the Sundarban Biosphere Reserve, India. Ecol. Indic. 136, 108553.‏
Mondal, I., S. Thakur, M. Juliev, J. Bandyopadhyay and T.K. De. 2020. Spatio-temporal modelling of shoreline migration in Sagar Island. West Bengal, India, J. Coastal Conserv. Springer.
Morse, A., Tasumi, M., Allen, R.G., Kramber, W.J. 2000. Application of the SEBAL methodology for estimating consumptive use of water and streamflow depletion in the Bear River Basin of idaho through remote sensing. Idaho Department of Water Resources, Boise. 
Ostad-Ali-Askar, K., Su, R., Liu, L. 2018. Water resources and climate change. IWA Publishing 9(2), 239.
Ostad-Ali-Askari K., Shayannejad, M., Eslamian, S. 2017. Deficit irrigation: optimization models. management of drought and water scarcity. Handbook of Drought and Water Scarcity, 3, 373-389.
Ostad-Ali-Askari, K., Shayannejad, M. 2020. Impermanent changes investigation of shape factors of the volumetric balance model for water development in surface irrigation. In: Modeling Earth Systems and Environment. Springer Nature Switzerland AG, 1573-1580.
Ostad-Ali-Askari, K., Shayannejad, M. 2021. Quantity and quality modeling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environ. Dev. Sustain. Springer Nature Switzerland AG. 23(11), 15943-15959.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., Abrams, M. 2017. Online global land surface temperature estimation from landsat. Remote Sens. 9(12), 1208.
Pielke, R.A., Avissar, R., Raupach, M., Dolman, A.J., Zeng, X.,  Denning, A.S. 1998. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol. 4 (5), 461-475.
Qahari, Gh., Pakparvar, M.  2021. Determining the water consumption of different types of vegetation with energy balance models and remote sensing in Dasht Garbaigan. Final Report of The Research Project, 92 pages (in Persian).
Ramirez-Cuesta, J.M., Allen, R.G., Intrigliolo, D.S., Kilic, A.,  Robison, C.W., Trezza, R., Santos, C.L. 2020. METRIC-GIS: an advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environ. Modell. Software 104770(121).
Rawat, K.S., Singh, S.K., Bala, A.,  Szabó, S. 2019. Estimation of crop evapotranspiration through spatially distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 213, 922-933.‏
SEBAL. 2002. Surface energy balance algorithms for land, idaho implementation, advanced training and user’s manual.
Shamloo, N., Taghi Sattari, M., Apaydin, H., Valizadeh Kamran, K., Prasad, R. 2021. Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods. Int. J. Digit. Earth 14(11), 1638-1658 (in Persian).
Sun, Z., Wei, B., Su, W., Shen, W., Wang, C., You, D., Liu, Z. 2011. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 54(3-4), 1086-1092.‏
Talebmorad, H., Ahmadnejad, A., Eslamian, S., Ostad-Ali-Askari, K., Singh, V.P. 2020. Evaluation of uncertainty in evapotranspiration values by FAO56-Penman-Monteith&Hargreaves-Samani methods. Int. J. Hydrol. Sci. Technol. 10(2), 135-147.
Talebmorad, H., Koupai, J.A., Eslamian, S., Mousavi, S.F., Akhavan, S., Askari, K.O.A., Singh, V.P. 2021. Evaluation of the impact of climate change on reference crop evapotranspiration in Hamedan-Bahar Plain. IJHST 11(3), 333.
Thakur, S., Maity, D., Mondal, I., Basumatary, G., Ghosh, P.B., Das, P., De, T.K. 2021. Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ. Dev. Sustain. 23(2), 1917-1943.
Vanani, H.R., Shayannejad, M., Soltani Tudeshki, A.R., Ostad-Ali-Askari, K., Eslamian, S., Haeri-Hamedani, M., Jabbari, H. 2017. Development of a new method for determination of infiltration coefficients in furrow irrigation with natural non-uniformity of slope. Sustain. Water Resour. Manag. 3(2), 163-169.
Waters, R., Allen, R.G., Bastiaanssen, W., Tasumi, M., Trezza, R. 2002. "Sebal." Surface Energy Balance Algorithms for Land. Idaho Implementation. Idaho: Advanced Training and Users Manual.