با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مهندسی آب، دانشکده عمران، دانشگاه تبریز، تبریز، ایران

2 دانشجوی دکتری آب و سازه های هیدرولیکی، دانشکده عمران، دانشگاه تبریز، تبریز،ایران

چکیده

مقدمه
پیش‌بینی تغییرات بیشینه دما، بسیار مهم است و به‌دلیل تاثیرات زیادی که بر منابع آبی، کشاورزی و محیطی دارد، اهمیت فزاینده‌ای پیدا کرده است. با پیش‌بینی دما، می‌توان از تغییرات آینده آگاه شد و تمهیدات لازم برای تعدیل اثرات منفی آن بر منابع آبی، کشاورزی و محیطی را انجام داد. بنابراین، مدلسازی و پیش‌بینی بیشینه دما می‌تواند، به‌عنوان یک ابزار مهم در برنامه‌ریزی و مدیریت منابع طبیعی، اقتصادی و صنعتی مورد استفاده قرار گیرد.
مواد و روش‌‌ها
در این پژوهش، بیشینه دما با استفاده از روش نوین حافظه طولانی-کوتاه‌-مدت (LSTM) بر پایه روش‌‌های پیش‌پردازنده تبدیل موجک گسسته (DWT) و تجزیه مد تجربی کامل (CEEMD) در دو اقلیم متفاوت (مرطوب و نیمه‌خشک) مدلسازی شد. برای این منظور، از داده‌‌‌‌‌های دمای بیشینه، دمای کمینه، بارش و تابش خورشیدی به‌صورت روزانه مربوط به دوره 2001 تا 2020 ایستگاه‌های سینوپیک واقع در سیاه‌بیشه شهرستان آمل در استان مازندران و فرودگاه شهرستان ارومیه در استان آذربایجان غربی، استفاده شد. مشخص شد که در منطقه نیمه‌‌خشک، پارامترهای دمای بیشینه و کمینه دو روز قبل و دمای بیشینه و کمینه یک روز قبل و‌ دمای کمینه و تابش خورشیدی همان روز و در منطقه مرطوب، پارامترهای دمای بیشینه دو روز قبل و دمای بیشینه و کمینه یک روز قبل و دمای کمینه و تابش خورشیدی همان روز، به‌عنوان مدل برتر شناخته شده است.
نتایج و بحث
نتایج حاصل از تحلیل مدل‌ها، قابلیت و کارایی بالای روش به‌کار رفته در تخمین بیشینه دما را به ‌خوبی نشان داد. از طرف دیگر، روش‌های پیش‌پردازنده باعث بهبود نتایج شدند. در بررسی‌های صورت گرفته مشاهده شد که نتایج حاصل از تجزیه بر اساس تبدیل موجک، منجر به نتایج بهتری می‌شود، به‌طوری‌ که معیار ارزیابی DC برای مدل برتر در منطقه نیمه‌خشک شهرستان ارومیه، از 0.965 به 0.993 و در منطقه مرطوب شهرستان آمل از 0.926 به 0.970، افزایش یافت و معیار RMSE در فرودگاه ارومیه از 1.943 به0.896 و در سیاه‌بیشه از 2.595 به 1.648، کاهش یافته است.
نتیجه‌گیری
نتایج بررسی نشان از افزایش معیار ارزیابی DC و کاهش RMSE برای ایستگاه سینوپتیک فرودگاه ارومیه به‌ترتیب 2.74 و 53.87 درصد و برای ایستگاه سینوپتیک سیاه‌بیشه آمل به‌ترتیب 4.80 و 35.50 درصد شد. این نتایج نشان می‌‌دهد، تبدیل موجک بیشترین تاثیر را در بهبود عملکرد مدل LSTM دارد و مدل‌های‌‌ منتخب، قابلیت و کارایی بالایی در تخمین میزان دمای بیشینه را دارند. با توجه به نتایج تحلیل حساسیت مشخص شد، پارامتر دمای یک روز قبل، تاثیرگذارترین پارامتر در تخمین بیشینه دمای روزانه برای دو منطقه با اقلیم متفاوت مرطوب و نیمه‌خشک است.

کلیدواژه‌ها

عنوان مقاله [English]

Temperature modeling in semi-arid and humid climates using long-short-term memory and CEEMD and DWT preprocessor methods

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • sadegh Abdelzad 2

1 Professor, Department of water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

2 PhD Candidate of Water and Hydraulic Structures, Faculty of Civil Engineering, University of Tabriz ,Tabriz, Iran

چکیده [English]

Introduction
Predicting the maximum temperature changes is very important and has become increasingly important due to the many effects it has on water resources, agriculture and the environment. By forecasting the temperature, one can be aware of future changes and make the necessary arrangements to adjust its negative effects on water resources, agriculture and the environment. Therefore, modeling and forecasting the maximum temperature can be used as an important tool in the planning and management of natural, economic and industrial resources.
Materials and methods
In this article, the maximum temperature was modeled using the Long-Short-Term Memory (LSTM) method based on Discrete Wavelet Transform (DWT) and Complete Experimental Mode Decomposition (CEEMD) methods in two different climates (humid and semi-arid). For this purpose, the daily data of maximum temperature, minimum temperature, precipitation, and solar radiation were used from 2001 to 2020 of the synopic stations located in Siyahbisheh, Amol City in Mazandaran Province and Urmia City airport in West Azarbaijan Province. It was determined that in the semi-arid region, the parameters of maximum and minimum temperature two days before, and maximum and minimum temperature one day before, as well as the minimum temperature and solar radiation of the same day, and in the humid region, the parameters of maximum temperature two days before, and maximum and minimum temperature one day before, as well as the minimum temperature and solar radiation of the same day were recognized as the superior model.
Results and discussion
The results of the analysis of the models showed the capability and high efficiency of the method used in estimating the maximum temperature. On the other hand, the pre-processor methods improved the results. In the investigations, it was observed that the results of analysis based on wavelet transformation led to better results so that the DC evaluation criterion for the superior model in the semi-arid region of Urmia City went from 0.965 to 0.993 and in the humid area of Amol City increased from 0.926 to 0.970 and the RMSE criterion in Urmia Airport decreased from 1.943 to 0.896 and in Siyahbisheh from 2.595 to 1.648.
Conclusion
The results showed an increase in DC evaluation criteria and a decrease in RMSE for the synoptic station of Urmia Airport by 2.74% and 53.87%, respectively, and by 4.80% and 35.50% for the Siyahbisheh Amol Synoptic Station, respectively. This again shows that wavelet conversion has the greatest effect in improving the performance of the LSTM model and the selected models have high capability and efficiency in estimating the maximum temperature. According to the results of the sensitivity analysis, it was determined that the temperature parameter of the previous day is the most influential in estimating the maximum daily temperature for two regions with different climates (humid and semi-arid).

کلیدواژه‌ها [English]

  • Artificial neural networks
  • Deep learning
  • Empirical mode decomposition
  • Maximum temperature
  • Wavelet transform
Alizadeh, M.J., Kavianpour, M.R., Kisi, O., Nourani, V., 2017. A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J. H. 548, 588-597.
Amirat, Y., Benbouzid, M.E.H., Wang, T., Bacha, K., Feld, G.J.A.A., 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, 202-209.
Ashour, M.A., ElZahaby, S.A., Abdalla, M.I., 2016. Backpropagation neural network approach for mean temperature prediction. Inter. J. Recent Res. Appli. Studies 29, 12-18.‏‏
Behmanesh, J., Azad Talatappeh, N., Montaseri, M., Rezayi, H., Khalili, K., 2015. Climate change impact on reference evapotranspiration, precipitation deficit and vapor pressure deficit in Urmia. Water Soil Sci. 25(2), 79-91.‏
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint 1412, 3555.‏
Deng, L., Yu, D., 2014. Deep learning: methods and applications. Found. Trends Signal Process. 7(3-4), 197-387.‏
Esfandiari, D.F., Hosseni, S.A., Azadi, M.M., Hejazizadeh, Z., 2011. Prediction of monthly average temperature through Artificial‌‌  Neural  Network Multilayer Perceptron (MLP)‏. Water 13(9), 1294 (in Persian).
Feng, H., Liu, Y., 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. J. H. 531, 1129-1140.‏ Felix, A.G., Jürgen, S., Fred, C., 2000. Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451-2471.‏
Ghorbani, M., Shiri, J., Kazemi, H., 2010. Estimation of maximum, mean and minimum air temperature in Tabriz city using artificial intelligent methods. Water Soil Sci. 20(3), 87-104 (in Persian).
Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5-6), 602-610.
Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J., 2008. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. 31(5), 855-868.‏
Gers, F., Schmidhuber, J., Cummins, F., 2000. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 12:2451-71.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9(8), 1735-1780.‏
IPCC, 2001. Climate change: the scientific basis, contribution of working group to the third assessment report of the intergovernmental panell on climate change. Cambridge Univ. Perss, New York, NY, USA, 881 pages.
Karen, A., Latinez, S., 2010. Comparison of adaptive methods using Multivariate Regression Splines (MARS) and Artificial Neural Networks Backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro River Basin. Hydrol. Days 58-68.
Karthika, B.S., Deka, P.C., 2016. Modeling of air temperature using ANFIS by wavelet refined parameters. Int. J. Intell. Syst. Appl. 8(1), 25.‏
Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 399(1-2), 132-140.‏
Lashanizand, M., Payamani, K., Ahmadi, S., Veyskarami, I., 2014. Ecological climate zonation of Iran. Watershed Eng. Manage. 6(2), 175-189 (in Persian).
Li, X., Wu, X., 2015. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4520-4524 pages.
Mirzania, E., Malek Ahmadi, H., Shahmohammadi, Y., Ebrahim Zadeh, A., 2021. Impact of wavelet on accuracy of estimated models in rainfall-runoff modeling, case study: Sufi Chay. Water Soil Manage. Modell. 1(3), 67-79.
Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M., 1996. Wavelet toolbox for use with matlab. The Mathworks, Inc. Natick, Massachusetts, USA.
Omidi Ghaleh Mohammadi, S., Mazidi, A., Karemi, S., Hassani sadi, N., Omidi Ghaleh Mohammadi, M., Kharajpor, H., 2022. Estimating daily maximum temperatures using artificial networks, case study: Kerman. Territory 19(73), 109-120 (in Persian).
Peixoto, J.P., Oort, A.H., Lorenz, E.N., 1992. Physics of climate, Vol. 520. New York: American Institute of Physics.‏
Roushangar, K., Shahnazi, S., 2019. Evaluating the performance of data-driven methods for prediction of total sediment load in gravel-bed rivers. Iran. J. Soil Water Res. 50(6), 1467-1477.‏
Saghebian, S., 2020. Temporal and spatial Flow discharge prediction using integrated artificial intelligence and pre and post-processing time series methods. Iran. J. Irrigation Drainage 14(4), 1137-1151(in Persian).
Sak, H., Senior, A.W., Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling.‏ Interspeech 338-342 pages.
Sharifi, S.S., Rezaverdinejad, V., Nourani, V., 2016. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches. J. Atmos. Sol. Terr. Phys. 149, 131-145.‏
Wu, Z., Huang, N.E., 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597-1611.‏
Yadav, B., Eliza, K., 2017. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement 103, 294-301.
Zhang, Z., Dong, Y., 2020. Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity, 2020, 3536572.‏