با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی ‌عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استاد گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 دانشجوی کارشناسی ارشد مهندسی ‌عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

مقدمه
رودخانه‌ها، به‌عنوان منابع حیاتی طبیعت و پایه‌های اصلی توسعه پایدار شناخته می‌شوند. لذا، کمیت و کیفیت آب رودخانه‌ها جز پارامترهای ارزشمند محسوب می‌شوند. افزایش فعالیت‌های کشاورزی و صنعتی، باعث کاهش کیفیت منابع آب در بسیاری از نقاط شده است. تخلیه فاضلاب، زباله و کودهای شیمیایی در روستاهای حاشیه رودخانه‌ها از مهم‌ترین منابع آلودگی کیفیت آب به شمار می‌رود. حجم ورود پساب‌های شهری و کشاورزی به این رودخانه، باعث افزایش مقادیر آلاینده‌ها شده، به‌طوری‌که در بازه سال‌های 1372 تا انتهای سال 1396، میانگین آلاینده‌های موجود در ایستگاه ورند برای سه آلاینده مواد جامد محلول، کلر و سدیم به‌ترتیب برابر 507.49، 2.16 و 2.47 بوده است. بنابراین، برآورد دقیق پارامترهای کیفیت آب، یک نیاز اساسی برای مدیریت کیفیت آب، سلامت انسان، مصرف عمومی و مصارف خانگی است.
مواد و روش‌ها
حوضه تجن، با مساحتی در حدود 4147.22 کیلومتر مربع دارای میانگین دبی رودخانه و بارندگی سالانه به‌ترتیب 20 متر مکعب بر ثانیه و 539 میلی‌متر است. بیشترین و کمترین ارتفاع حوضه، به‌ترتیب 3728 و 26 متر گزارش شده است. فعالیت‌های مختلفی نظیر کشاورزی و سدسازی در این رودخانه صورت می‌‌گیرد. در این پژوهش، از تلفیق دو مدل برنامه‌نویسی بیان ژن (GEP) و شبکه عصبی مصنوعی (ANN)، با یکی از الگوریتم پیش‌پردازش داده به‌نام EMD برای تخمین یکی از پارامتر مهم کیفیت آب به نام مواد جامد محلول (TDS) استفاده شد. بدین منظور، در این پژوهش، برای مدلسازی و برآورد مقادیر مواد جامد محلول از چندین داده کیفی شامل سدیم، کلسیم، منیزیم، سولفات بی‌کربنات، سولفوریک اسید و کلر که در بازه سال‌های 1372 تا انتهای سال 1396 در ایستگاه ورند اندازه‌گیری شده، استفاده شد.
نتایج و بحث
در ابتدا، نتایج حاصل از داده‌های مشاهداتی در طول مدت نمونه برداری نشان دادند که مقادیر TDS در حدود 80 درصد از نمونه‌ها در بازه 300 تا 600 میلی گرم بر لیتر بوده که بیانگر کیفیت خوب آب این رودخانه بوده است. برای مقایسه عملکرد مدل‌های مستقل و ترکیبی برای تخمین پارامترهای کیفی رودخانه در مراحل آموزش و آزمون، شاخص‌های آماری ضریب همبستگی (R)، ریشه میانگین مربعات خطا (RMSE)، میانگین انحراف خطا  (MBE)، ضریب نش (NSE)، تابع هدف (OBJ) و نسبت RSD، استفاده شدند. نتایج حاصل از این مطالعه نشان داد که مدل ترکیبی حاصل از برنامه‌نویسی بیان ژن و تجزیه مود تجربی (EMD-GEP) توانست با کمترین خطا ( 0.23=RSD و 24.41=RMSE) عملکرد بالاتری را در مقایسه با سایر مدل‌ها مانند مدل GEP ( 0.44 =RSD و RMSE=47.27) در تخمین این پارامتر کیفی آب داشته باشد. علاوه‌بر این، مدل ترکیبی حاصل از شبکه عصبی مصنوعی و تجزیه مود تجربی (EMD-ANN) با 36.64 =RMSE و 0.95=R بعد از EMD-GEP، در رتبه دوم قرار گرفت. مطابق نتایج حاصل از تابع هدف برای هریک از مدل‌ها، مدل EMD-GEP دارای مقادیر تابع هدف کمتری (15.92=OBJ) نسبت به سایر مدل‌ها در مدلسازی مواد جامد محلول است. درحالی‌که، بیشترین مقدار تابع هدف (29.34=OBJ) متعلق به مدلGEP  است.
نتیجه‌‌‌گیری
به‌منظور، تخمین مواد جامد محلول در رودخانه تجن، از روش‌‌های ANN و GEP در این پژوهش استفاده شد. سپس، برای تقویت برآوردها از الگوریتم‌‌های تجزیه مود تجربی برای پیش‌‌پردازش داده‌‌های سری زمانی استفاده شد. نتایج به‌دست آمده از مدل‌‌های هوشمند تلفیقی با استفاده از شاخص‌‌های آماری خطا، مانند ضریب همبستگی، ریشه میانگین مربعات خطا، مورد ارزیابی قرار گرفت. نتایج نشان داد که روش EMD، باعث تقویت مدل‌های  ANN و GEP، در راستای تخمین این پارامتر کیفی آب در ایستگاه ورند شده‌‌اند. به‌طوری‌که مدل‌های ترکیبی حاصل از GEP و ANN توانست 48.35 درصد و 14.02 درصد خطای RMSE را به‌ترتیب در مقایسه با دو مدل مستقل GEP و ANN کاهش دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of integrated artificial intelligence models in estimating total dissolved solid concentrations in the upstream of Sari city

نویسندگان [English]

  • Alireza Ghaemi 1
  • Mahdi Azhdary Moghaddam 2
  • Sarina Keikha 3

1 Ph.D Student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

3 Msc Student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

چکیده [English]

Introduction
Rivers are known as the vital resources of nature and the main foundations of sustainable development. Therefore, the quantity and quality of river water are considered valuable parameters. The increase in agricultural and industrial activities has reduced the quality of water resources in many places. The discharge of sewage, garbage and chemical fertilizers in the villages along the rivers is one of the most important sources of water quality pollution. The amount of urban and agricultural wastewater entering this surface has caused an increase in the amount of pollutants, so that in the period of 1993 to the end of 2017, the average amounts the three pollutants of total dissolved solid, chlorine and sodium in Varand Station are respectively 507.49, 2.16 and 2.47. Therefore, accurate estimation of water quality parameters is a basic requirement for water quality management, human health, public consumption and domestic use.
 
Materials and methods
Tajan River basin with an area of about 4147.22 square kilometers has an average river discharge and annual rainfall of 20 cubic meters per second and 539 mm respectively. The highest and lowest elevations of this River basin have been reported as 3728 and 26 meters, respectively. Various human activities such as agriculture and dam construction are carried out in this river. Therefore, evaluationg the water quality of this river basin is required. In this research, the combination of two Gene Expression Programming Models (GEP) and Artificial Neural Network (ANN) with a data preprocessing algorithm called Empirical Mode Decomposition (EMD) was used to estimate one of the important parameters of water quality called Total Dissolved Solids (TDS). For this purpose, in this research, some of qualitative parameters including sodium, calcium, magnesium, sulfate bicarbonate, sulfuric acid and chlorine, which were measured in the period of 1993 to the end of 2017 at Varand station, were used to estimate the concentration of total dissolved solids.
 
Results and discussion
At first, the results of the observation data during the sampling period indicated that the TDS values in about 80% of the samples were in the range of 300 to 600 mg.liter-1, which reprsented the good quality of the water of this river. In order to compare the performance of independent and integrated approaches in estimating the quality parameters of the Tajan River in the training and testing stages, the evaluation benchmarks including Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Deviation of Error (MBE), Nash Coefficient (NSE), Objective Function (OBJ) and RSD ratio were applied. The results of this study demonestrated that the integrated model of Gene Expression Programming and Empirical Mode Decomposition (EMD-GEP) with the lowest error (RSD=0.23 and RMSE=24.41) was the most accurate model in TDS estimating compared to other models such as GEP (RSD=0.44 and RMSE=47.27). In addition, the integrated model of Artificial Neural Network and Empirical Mode Decomposition (EMD-ANN) with RMSE=36.64 and R=0.95 was stood at the second rank. Additionally, the outcomes of the Objective Function (OBJ) represented that EMD-GEP model could achieved the lowest OBJ value (15.92) than other techniques in the TDS modeling. While, the highest value of the OBJ=29.34 belonged to the GEP model.
 
Conclusion
ANN and GEP methods were applied in this research to estimate TDS concentarion in the Tajan River. After that, to increase the accuracy of the models, EMD technique was recruited to decompose the time series dataset. The results obtained from the integrated models were evaluated using some error statistical benchmarks such as correlation coefficient, root mean square error. The results showed that the EMD method could play an essential role in increasing the ANN and GEP performance so as to estimate this water quality parameter in Varand station. So that EMD-GEP and EMD-ANN could reduce the RMSE error by 48.35% and 14.02%, respectively, compared to the two independent models of GEP and ANN.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Data pre-processing algorithms
  • Gene expression programming
  • Tajan river
Ahmadi Momqani, Y., Khorasani, N.A., Rafiei, Gh. 2010. Investigating polluting sources and water quality of Tajen river. J. Nat. Environ. 63(4), 317-327 (in Persian).
Amiri, A., Amiri, S. 2015. Prediction of river quality parameters using artificial neural network. International Conference on New Achievements in Civil Engineering, Architecture, Environment and Urban Management, Tehran, 13 pages (in Persian).
Arya, A.N., Kardan, N., Ghordoyee, S. 2021. Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng. Comput. 1-19.
Bagheri, M., Mansouri, P., Talebi, M.A., Karmi, M., Farzan, M. 2018. Comparison of water quality parameters of Paruz and Sabzkoh Rivers (Chaharmahal and Bakhtiari Provinces) with cold water fish farming standards. Aquac. Dev. J. 12(3), 1-14 (in Persian).
Banadkooki, F.B., Ehteram, M., Panahi, F., Sammen, S.S., Othman, F.B., Ahmed, E.S. 2020. Estimation of Total Dissolved Solids (TDS) using new hybrid machine learning models. J. Hydrol. 587, 124989.
Esmaeili-Gisavandani, H., Lotfirad, M., Sofla, M.S.D., Ashrafzadeh, A. 2021. Improving the performance of rainfall-runoff models using the gene expression programming approach. J. Water Climate Change 12(7), 3308-3329.
Ebadi, A.G., Zare, S. 2005. Measurement of organophosphorus pesticide in fish from the Tajan River. Pakistan J. Biolog. Sci. 8(10), 1463-1465
Fethian H., Hormozinejad A. 2011. Prediction of quantitative and qualitative flow parameters in the Karun River (Malathani-Farsiat Basin) using artificial neural networks. J. Wet. Ecobio. 2(8), 29-43 (in Persian).
Gandomi, A.H., Alavi, A.H., Ting, T.O., Yang, X.S. 2013. Intelligent modeling and prediction of elastic modulus of concrete strength via gene expression programming. In Advances in Swarm Intelligence: Proceedings of 4th International Conference, ICSI 2013, Harbin, China, Part I4 Springer Berlin Heidelberg.
Gazzaz, N.M., Yusoff, M.K., Aris, A.Z., Juahir, H., Ramli, M.F. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollu. Bulletin 64(11), 2409-2420
Ghavidel, S., Montaseri, M. 2014. Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud Basin. Stoch. Environ. Res. Risk Assess. 28, 2101-2118.
Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M. 2020. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: new approach. J. Hydrol. 589, 125335.
Mohammadpour, R., Shaharuddin, S., Chang, C.K., Zakaria, N.A., Ab-Ghani, A., Chan, N.W. 2015. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 22(8), 6208-6219.
Najafzadeh, M., Ghaemi, A. 2019. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environ. Monit. Assess. 191, 1-21.
Nowzari, H., Nematullahi, L. 2021. Investigating the qualitative characteristics of underground water sources that supply drinking water in Abade City. Hum. Environ. 19(1), 23-33 (in Persian).
Peipolzadeh, S., Mastouri, R., Shahkarmi, N. 2022. Modeling and prediction of dissolved solids in Tajen River using an artificial intelligence-based approach based on pre-processing algorithms. Iran Water Res. 16(1), 25-37 (in Persian).
Rezaie-Balf, M., Attar, N.F., Mohammadzadeh, A., Murti, M.A., Ahmed, A.N., Fai, C.M., El-Shafie, A. 2020. Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: Comparative assessment of a noise suppression hybridization approach. J. Clean. Prod. 271, 122576.
Saeedi M., Karbassi, A.R., Nabi Bidhendi, Gh.R., Mehrdadi, N. 2006. Impact of anthropogenic activities on heavy metals pollution in Tajan River water, Mazandaran Province. J. Environ. Stu. 32(40), 41-50.
Safar Talory, M., Dehghani, A. 2012. Predicting changes in water quality of Shast Kalateh River using artificial neural network. Proccedings of National Conference on Water Flow and Pollution, Tehran (in Persian).
Sharafati, A., Asadollah, S.B.H.S., Hosseinzadeh, M. 2020. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf. Environ. Prot. 140, 68-78.
Shiri, N., Shiri, J., Yaseen, Z.M., Kim, S., Chung, I.M., Nourani, V., Zounemat-Kermani, M. 2021. Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios. Public Library of Science (PLOS) One, 16(5), e0251510.
Sun, K., Rajabtabar, M., Samadi, S., Rezaie-Balf, M., Ghaemi, A., ShamshirBand, S., Mosavi, A. 2021. An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction. Eng. Appl. Comput. Fluid Mech. 15(1), 251-271.
Wu, Z., Huang, N.E. 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advan. Adap. Ddata Analy. 1(01), 1-41.
Mokhtarzad, M., Eskandari, F., Vanjani, N.J., Arabasadi, A. 2017. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ. Earth Sci. 76(21), 1-10.
Yang, H.F., Chen, Y.P.P. 2019. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Syst Appl. 120, 128-138.
Zhang, J., Yan, R., Gao, R.X., Feng, Z. 2010. Performance enhancement of ensemble empirical mode decomposition. Mech. Syst. Signal Process. 24(7), 2104-2123.