با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، ایران و کارشناس برنامه ریزی طرح های شرکت آب و فاضلاب استان گیلان، ایران

2 کارشناس ارشد، مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، ایران

3 دانشیار گروه مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، ایران و محقق ارشد، دانشکده جغرافی، دانشگاه مینوث، ایرلند

4 دکتری هیدرولوژی و منابع آب، موسسه تحقیقات آب، تهران، ایران

5 دانشجوی دکتری، مهندسی ژئوتکنیک، دانشکده مهندسی عمران، دانشگاه محقق اردبیلی، ایران

چکیده

مقدمه
یکی از راه‌های برآورد مقدار رواناب حاصل از بارش، استفاده از مدل‌های هیدرولوژیکی است. مدل SWAT، یکی از ابزارهای پرکاربرد در سطح حوزه آبخیز در شبیه‌‌سازی کمیت و کیفیت آب است. این مدل، یک مدل مفهومی است که قادر است حوضه‌‌های بزرگ با سناریوهای مدیریتی مختلف را شبیه‌‌سازی کند. از جمله چالش‌های مهم مدل مذکور و بسیاری از مدل‌‌های هیدرولوژیکی، واسنجی پارامترهای موثر و حساس در برآورد مقدار رواناب است. به‌طور کلی، روش‌های واسنجی را می‌‌توان به دو گروه دستی و خودکار تقسیم کرد. واسنجی یک مدل به‌صورت دستی، نیازمند این است که مدل‌ساز، شناخت خوبی نسبت به فیزیک مد‌ل داشته باشد. از سویی، به‌دلیل وقت‌گیر بودن و پیچیدگی‌های موجود و همچنین، توسعه الگوریتم‌‌های جدید بهینه‌‌سازی، امروزه واسنجی خودکار بیشتر مورد توجه قرار گرفته ‌‌است. واسنجی خودکار بر پایه سه مولفه تابع هدف، الگوریتم بهینه‌‌سازی و اطلاعات ایستگاه‌ها بنا شده ‌‌است. استفاده از یک تابع هدف در واسنجی یک مدل ممکن است موجب افزایش خطا در برخی دیگر از جنبه‌های شبیه‌سازی شود و همچنین، تجربه‌های علمی در زمینه واسنجی تک‌‌هدفه نشان داده است که هیچ تابع هدفی هرچند با کارایی بالا، به تنهایی نمی‌‌تواند ویژگی‌ها و خصوصیات حوضه را به درستی نشان دهد. لذا، به‌‌کارگیری راه‌‌حل بهینه‌‌سازی مناسب به‌‌منظور بهبود نتایج واسنجی شامل استفاده از یک الگوریتم بهینه‌‌سازی مناسب با چندین تابع هدف، برای شناسایی مجموعه جواب‌‌های کارآمد است.
مواد و روش‌‌ها
حوزه آبخیز مورد مطالعه در غرب ایران و در استان کرمانشاه، با مساحت 5467 کیلومتر مربع، واقع شده است. کمینه و بیشینه ارتفاع آن، 1275 و 3360 متر است. متوسط بارندگی حوضه، حدود 505 میلی‌متر بوده است که بیشترین بارش در ماه‌های آبان و آذر و کمترین بارش در ماه‌های تیر و مرداد رخ می‌دهد و سه رودخانه اصلی مرک، قره‌سو و رازآور در این حوضه جریان دارند. در این پژوهش، مدل بارش-رواناب SWAT، با استفاده از الگوریتم‌ NSGA-II تحت سه سناریو واسنجی شد. برای واسنجی این مدل، در سناریوی اول، از تابع هدف NSE که به جریان‌‌های بیشینه توجه دارد، استفاده شد. در سناریوی دوم، برای تمرکز بر جریان‌‌های کمینه، پس از تبدیل لگاریتمی دو سری جریان رواناب شبیه‌‌سازی ‌‌شده و مشاهداتی، ضریب کارایی NSE به‌عنوان تابع هدف اتخاذ شد که به‌صورت LogNSE نمایش داده می‌‌شود. سناریوی آخر، تلفیقی از دو سناریوی اول و دوم بود. به‌‌طوری ‌‌که توابع هدف غیرهمسوی NSE و LogNSE به‌صورت همزمان مورد استفاده قرار گرفتند.
نتایج و بحث
نتایج این پژوهش، نشان داد که با توجه به مقادیر شاخص ارزیابی NSE برابر با 0.83، 0.74 و 0.83 برای سناریوهای اول تا سوم و بیش برآوردی مدل و بررسی نمودار جریان در سناریوی اول و تمایل بیشتر برای حرکت به سمت دبی‌‌های بالا، این سناریو برای برآورد جریان‌‌های بیشینه، کارآمدتر خواهد بود. همچنین، با توجه به شاخص ارزیابی LogNSE، مقادیر 0.69، 0.74 و 0.72 برای سناریوهای اول تا سوم، سناریوی دوم با تک هدف LogNSE در دبی‌‌های کمینه، عملکرد بهتری دارد. اما مدل ساخته شده با استفاده از دو تابع هدف غیرهمسو، سعی بر ایجاد توازن داشته است و عملکرد مطلوبی در تخمین همزمان رواناب‌های بیشینه و کمینه دارد.
نتیجه‌گیری
به‌طور کلی می‌توان گفت، در صورتی‌که هدف مطالعه بررسی دبی‌‌های بیشینه و کمینه، یعنی مطالعات سیلاب یا خشکسالی باشد، الگوریتم‌‌های تک ‌هدفه عملکرد مطلوب‌‌تری خواهند داشت. در صورتی‌که با هدف کنترل بیلان آبی و عملکرد مطلوب یک مدل در دو سوی دبی‌‌های بیشینه و کمینه، مدلسازی انجام شود، سناریوی دو هدفه با رویکرد غیرهمسو می‌‌تواند نتیجه بهتری نسبت به الگوریتم‌‌های تک هدفه داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the impact of non-aligned objective functions in multi-objective calibration with SWAT hydrological model, case study: Qarasu Watershed, Kermanshah

نویسندگان [English]

  • Ashkan Banikhedmat 1
  • hosein salehi 2
  • saeed golian 3
  • farshad koohian afzal 4
  • nazanin ezati boorestan 5

1 PhD Candidate of Water Resources Engineering and Management, Faculty of Civil Engineering, Shahrood University of Technology and Planning expert of Water and Wastewater Company of Gilan Province, Iran

2 Master of Water Resources Engineering and Management, Faculty of Civil Engineering, Shahrood University of Technology

3 Associate Professor, Department of Surveying, Faculty of Civil Engineering, Shahrood University of Technology and Senior Researcher, Faculty of Geography, University of Maynooth, Ireland

4 Ph.D. in Hydrology and Water Resources, Water Research Institute, Tehran, Iran

5 PhD student, Geotechnical Engineering, Faculty of Civil Engineering, Mohaghegh Ardabili University, Iran

چکیده [English]

Introduction
One of the methods for estimating the amount of runoff resulting from precipitation is the use of hydrological models. The SWAT model is one of the widely used tools for simulating the quantity and quality of water at the watershed level. This model is a conceptual model that is capable of simulating large watersheds with different management scenarios. One of the major challenges of this model and many other hydrological models is the calibration of effective and sensitive parameters for estimating the amount of runoff. In general, calibration methods can be divided into two groups: manual and automatic. Manual calibration of a model requires the modeler to have a good understanding of the model's physics. On the other hand, due to the time-consuming nature, existing complexities and the development of new optimization algorithms, nowadays automatic calibration has gained more attention. Automatic calibration is based on three components: the objective function, the optimization algorithm, and the station information. The use of a single objective function in model calibration may lead to an increase in error in other aspects of the simulation. Scientific experience in single-objective calibration has shown that no single objective function, even with high efficiency, can accurately represent all the characteristics and properties of a watershed. Therefore, the use of an appropriate optimization algorithm to improve calibration results includes the use of multiple objective functions to identify a set of efficient solutions.
Materials and methods
The study area is located in the western part of Iran, in Kermanshah Province, with an area of 5467 square kilometers. The minimum and maximum elevations in the area are 1275 and 3360 meters, respectively. The average precipitation in the watershed is about 505 mm, with the highest rainfall occurring in the months of November and Decemeber, and the lowest rainfall in the months of Julay and August. The main rivers in this watershed are Mark, Gharehsoo, and Razavar. In this study, the SWAT rainfall-runoff model was calibrated using the NSGA-II algorithm under three calibration scenarios. For model calibration, the first scenario used the NSE objective function, which focuses on maximum flows. In the second scenario, to focus on minimum flows, the logarithmic transformation of the simulated and observed streamflow series was used, and the NSE efficiency coefficient was adopted as the objective function, represented as LogNSE. The third scenario was a combination of the first and second scenarios, where the non-concordant objective functions NSE and LogNSE were used simultaneously.
Results and discussion
The results of this study showed that based on the NSE evaluation index values (0.83, 0.74 and 0.83 for the first to third scenarios) and the model overestimation and examination of the flow graph in the first scenario, which showed a tendency towards higher flows, this scenario would be more efficient in estimating maximum flows. Additionally, considering the LogNSE evaluation index (0.69, 0.74 and 0.72 for the first to third scenarios), the second scenario with the LogNSE single objective performed better in minimum flows. However, the model constructed using two non-concordant objective functions aimed to achieve a balance and showed satisfactory performance in simultaneously estimating maximum and minimum flows.
Conclusion
In general, it can be concluded that if the objective of the study is to investigate maximum and minimum flows, such as flood or drought studies, single-objective algorithms will perform better. However, if the objective is to control the water balance and achieve satisfactory performance of a model in both maximum and minimum flows, a two-objective scenario with a non-concordant approach can yield better results compared to single-objective algorithms.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Simulation of Rainfall-Runoff
  • NSGA-II. Validation
Abbaspour, K.C., 2015. SWAT Calibration and Uncertainty Programs (CUP), a user manual. Swiss Federal Institute of  Aquatic Science and Technology, Eawag, Duebendorf, 1-100 pages.
Abbaspour, K.C., Johnson C., Genuchten, M.T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 3, 1340-1352.
Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Klove, B., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 524, 733-752.
Abbaspour, K.C., Vejdani, M., Haghighat, S., Yang, J., 2007. SWAT-CUP calibration and uncertainty programs for SWAT. In MODSIM International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand.
Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., Srinivasan, R., 2006. Modelling hydrology and water quality in the pre-Alpine/Alpine Thur Watershed using SWAT. J. Hydrol. 333, 413- 430.
Ahmadi, A., Jalali, J., Mohammadpour, A., 2022. Future runoff assessment under climate change and land-cover alteration scenarios:a case study of the Zayandeh-Roud Dam upstream watershed. Hydrol. Res. 53(11), 1372-1392.
Ambrosio, D.D., Spataro, W., Rongo, R., 2013. Genetic algorithms, optimization and evolutionary modeling. Treatise on Geomorphology 74–97.
Arnold, J.G., Allen, P.M., 1996. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol. 176, 57-77.
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harme, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K., 2012. SWAT: model use, calibration, and validation. Trans. ASABE. 55, 1491-1508.
Arnold, J.G., Srinivasa, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: model development. J. Am. Water Resour. Assoc. 34, 73-89.
Barezaei, A., Jalali, J., 2023. A comparison of simulated runoff based on ground rangauges and PERSIANN-CDR satellite precipitation rercord using SWAT model. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. X-4/W1-2022, 87-94.
Bekele, E.G., Nicklow, J.W., 2007. Multiobjective automatic calibration of SWAT using NSGA-II. J. Hydrol. 341, 165-176.
Brighenti, T.M., Bonuma, N.B., Grison, F., Mota, A.D.A., Kobiyama, M., Ghaffe, P.B.L., 2019. Two calibration methods for modeling streamflow and suspended sediment with the SWAT model. J. Ecol. Eng. 127, 103-113.
Chen, L., Qio, J., Wei, G., Shen, Zh., 2014. A preference-based multi-objective model for the optimization of best management practices. J. Hydrol. 520, 356-366.
Chilkoti, V., Bolisetti, T., Balachandar, R., 2018. Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment. Hydrol. Sci. J. 63, 1482-1501.
Deb, K., 2011. Multi-objective optimization using evolutionary algorithms: an introduction, technical report 2011003. Indian Institute of Technology Kanpur, 1-24 pages.
Deb K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182-197.
Eckhardt, K., Arnold, J.G., 2001. Automatic calibration of a distributed catchment model. J. Hydrol. 251, 103-109.
Ercan, M.B., Goodall, J.L., 2017. Design and implementation of a software library integrating NSGA-II with SWAT for multi-objective model calibration. Environ. Model Softw. 84, 112-120.
Francesconi, W.R.,  Srinivasan, P.M.E., Willcock, S.P., Quintero, M., 2016. Using the Soil And Water Assessment Tool (SWAT) to model ecosystem services: a systematic review. J. Hydrol. 535, 625-636.
Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Trans. ASABE 50, 1211-1250.
Golian, S., Murphy, C., Meresa, H., 2021. Regionalization of hydrological models for flow estimation in ungauged catchments in Ireland. J. Hydrol. Reg. Stud. 36, 100859.
Gupta, H.V., Sorooshian, S., 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour. Res. 34, 751-763.
Gupta, H.V., Sorooshian, S., Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J. Hydrol. Eng. 4, 135 .
Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80-91.
Jajarmizadeh, M., Sidek, L.K., Harun, S., Salarpour, M., 2017. Optimal calibration and uncertainty analysis of SWAT for an arid climate. Air, Soil Water Res. 10, 15.
Jalali, J., Ahmadi, A., Abbaspour, K., 2021. Runoff responses to human activities and climate change in an arid watershed of central Iran. Hydrol. Sci. J. V66, 2280-2297.
Jong, W.S., 2018. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). J. Ecol. Eng. 125, 50-67.
Kang, H., Moon, J., Shin, Y., Ryu, J., Kum, D.H., Jang, Ch., Choi, J., Kong, D.S., Lim, K.J., 2015. Modification of SWAT auto calibration for accurate flow estimation at all flow regimes. Paddy Water Environ. 14, 499-508.
Mengistu, A.G., Rensbur, L.D.V., Woyessa, Y.E., 2019. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 25, 18.
Paul, M., Negahban-azar, M., 2018. Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Model. Earth Syst. Environ. 4, 1509-1525.
Rajib, M.A., Merwade, V.,  Yu,  Zh., 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 536, 192-207.
Remegio, B., Confesor, J., Whittaker, G.W., 2007. Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. J. Am. Water Resour. Assoc. 43, 981-989.
Rusli, N., Majid, M.R., Yusop, Z., Tan, L.M., Hashim, S., Bohari, SH.N., 2016. Integrating manual calibration and auto-calibration of SWAT model in Muar Watershed, Johor. IEEE 7th Control and System Graduate Research Colloquium, Shah Alam, Malaysia.
Salehi, H., Sadeghi, M., Golian, S., Nguyen, P., Murphy, C., Sorooshian, S., 2022. The application of PERSIANN family datasets for hydrological modeling. Remote Sens. 14, 22.
Sorooshian, S., Gupta, V.K., Fulton, J.L., 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models' influence of calibration data variability and length on model credibility. J. Water Resour. Res. 19, 251-259.
Srinivas, N., Deb, K., 2001. Multiobjective optimization using nondominated sorting in genetic algorithms. J. Evol Comput. 2, 221-248.
Tan, M.L., Gassman, Ph., Yang, X., Haywood, J., 2020. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 143, 22.
Vrugt, J.A., Gupt, H.V., Bastidas, L.A., Bouten, W., Sorooshian, S., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 39, 8.
Yapo, P.O., Gupta, H.V., Sorooshian, S., 1996. Automatic calibration of conceptual rainfall-runoff models: sensetivity to calibration data. J. Hydrol. 181, 23-48.
Yapo, P.O., Gupta, H.V., Sorooshian, S., 1998. Multi-objective global optimization for hydrologic models. J. Hydrol. 204, 83-97.
Zhang, X., Srinivasan, R., Leiw, M.V., 2008. Multi‐site calibration of the SWAT model for hydrologic modeling. Trans ASABE. 51(6), 2039-204.