با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری. ایران.

2 استاد، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری. ایران.

3 دانش‌‌آموخته دکتری، گروه علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

مقدمه
سیل، به‌عنوان یکی از مخرب‌ترین بلایای طبیعی است که باعث تلفات جانی، خسارت‌های زیرساختی و اقتصادی قابل توجه و نابسامانی‌های اجتماعی، در سراسر جهان می‌شود. با توجه به این‌که سیل پدیده‌ای پویا و چند بعدی است، داده‌های سامانه اطلاعات جغرافیایی (GIS) و سنجش از دور (RS) تا حدود زیادی برای کشف وسعت مناطق سیل‌زده کاربرد دارد و در تهیه نقشه حساسیت‌پذیری و خطر سیل نقش ویژه‌ای دارند. نقشه حساسیت به سیل، برای توصیف مناطق در خطر سیل و برنامه‌ریزی برای ایجاد طرح‌های کنترل سیل، ضروری است.
 
مواد و روش‌ها
در این پژوهش، شناسایی مناطق سیل‌گیر در حوضه کارون بر اساس فرایند تحلیل سلسله مراتبی (AHP) در محیط سامانه اطلاعات جغرافیایی و صحت‌سنجی آن با شاخص آبی NDWI، استخراج شده از تصاویر ماهواره لندست 8، مد نظر بوده است. به این منظور، ابتدا 15 پارامتر موثر در وقوع سیلاب از جمله مقدار و جهت شیب، طبقات ارتفاعی، انحنای زمین، بارندگی، فاصله از آبراهه، تراکم آبراهه، فاصله از گسل، تراکم گسل، فاصله از جاده، تراکم جاده، لیتولوژی، شماره منحنی (CN)، کاربری اراضی، شاخص رطوبت توپوگرافی (TWI) و شاخص قدرت جریان (SPI)، انتخاب شدند. وزن‌دهی این پارامترها، بر اساس روش فرایند AHP در محیط نرم‌افزار Expert Choice انجام شد. در نهایت، با استفاده از دستور تلفیق لایه‌ها، بر اساس وزن‌دهی روش AHP در GIS، نقشه نهایی پهنه‌بندی خطر سیلاب به‌دست آمد. برای صحت‌سنجی نقشه خطر سیلاب به‌دست آمده، از شاخص آبی NDWI بهره گرفته شد.
 
نتایج و بحث
نتایج مدل AHP نشان داد که موثر‌ترین عوامل در بروز خطر سیلاب در حوضه کارون به‌ترتیب بارندگی، مقدار شیب و طبقات ارتفاعی هستند که برای کاهش خسارات سیلاب و ارائه راهکارهای مدیریتی، این عوامل بایستی مورد توجه قرار گیرند. همچنین، نتایج بیانگر آن است که مناطق پایین‌دست حوضه دارای بیشترین خطر سیل‌گیری را دارند و بیش از نیمی از سطح حوضه (52.24 درصد)، دارای پتانسیل سیل‌خیزی متوسط است.
 
نتیجه‌گیری
تهیه نقشه مناطق مستعد سیل، یکی از سازنده‌ترین روش‌هایی است که امکان کاهش خسارت‌های خطر سیل را فراهم می‌کند و به برنامه‌ریزان، ذی‌نفعان و تصمیم‌گیران کمک می‌کند تا نظارت مناسبی بر مناطق سیل‌خیز داشته باشند و توسعه اقتصادی-اجتماعی مناسب و پایدار را تضمین کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Identification and prioritization of flooding areas using GIS-based analytical hierarchy process, case study: Karun Watershed

نویسندگان [English]

  • Mahmoud Habibnejad Roshan 1
  • Kaka Shahedi 2
  • Sayed Hussein Roshun 3

1 Professor, Watershed Management and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University. Sari. Iran.

2 Professor, Watershed Management and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University. Sari. Iran.

3 Ph.D Graduate, Watershed Management and Engineering, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

چکیده [English]

Introduction
Floods are one of the most destructive natural disasters that cause severe injuries and loss of life, major infrastructure damage, significant economic losses, and social unrest worldwide. Due to the fact that flood is a dynamic and multidimensional phenomenon, Geographic Information System (GIS) and Remote Sensing (RS) data are used to a large extent to discover the extent of flooded areas and play a special role in preparing flood risk and susceptibility maps. Flood susceptibility mapping is essential for characterizing flood risk areas and planning flood control schemes.
 
Materials and methods
In this research, the identification of flooded areas in the Karun Watershed based on the Analytical Hierarchy Process (AHP) in the GIS environment and its validation with the NDWI blue index extracted from Landsat 8 satellite images has been considered. For this purpose, first, 15 effective parameters in floods occurrence including slope, aspect, elevation, curvature, rainfall, distance from stream, stream density, distance from fault, fault density, distance from road, road density, lithology, Curve Number (CN), land use, Topographic Wetness Index (TWI) and Stream Power Index (SPI) were selected and the weighting of these parameters was done based on AHP method in the Expert Choice software environment. Finally, by using the command to combine the layers based on the weighting of the AHP method in GIS, the final flood risk zoning map was obtained. NDWI water index was used to validate the flood risk map obtained.
 
Results and discussion
The results of the AHP model showed that the most effective factors in the occurrence of flood risk in the Karun Watershed include rainfall, the amount of slope and the height classes, which should be considered in order to reduce flood damage and provide management solutions for these factors. Also, the results show that the downstream areas of the watershed have the highest risk of flooding and more than half of the watershed's surface (52.24%) has a medium flood potential.
 
Conclusion
Preparing a map of flood-prone areas is one of the most constructive methods that enable the reduction of flood risk damages and help planners, stakeholders and decision-makers to properly monitor flood-prone areas and ensure appropriate and sustainable socio-economic development.

کلیدواژه‌ها [English]

  • Flood damage
  • Karun
  • Landsat 8
  • NDWI index
  • Zoning
Arabameri, A., Saha, S., Chen, W., Roy, J., Pradhan, B., Bui, D.T., 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 587, 125007.
Avand, M.T., Moradi, H.R., Ramazanzadeh, M., 2020. Flood susceptibility mapping using random forest machine learning and generalized bayesian linear model. Environ. Water Eng. 6(1), 83-95 (in Persian).
Bahremand, A., Hatami Golmakani, P., 2020. Evaluation of the potential flooding of Ziarat Watershed by CN-based method and WetSpa hydrological model. Irrig. Water Eng. 11(1), 38-51(in Persian).
Banihabib, M.E., Laghabdoost Arani, A., 2014. Flood management options using analytical hierarchy process and evaluation and mixed criteria. Irrig. Water Eng. 4(2), 72-82 (in Persian).
Black, A.R., Burns, J.C., 2002. Re-assessing the flood risk in Scotland. Sci. Total Environ. 294(1-3), 169-184.
Bowen, W.M., 1990. Subjective judgements and data envelopment analysis in site selection. Comput. Environ. Urban Syst. 14(2), 133-144.
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., Nestmann, F., 2006. Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat. Hazards Earth Syst. Sci. 6(4), 485-503.
Chowdhuri, I., Pal, S.C., Chakrabortty, R., 2020. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of Eastern India. Adv. Space Res. 65(5), 1466-1489.
Dash, P., Sar, J., 2020. Identification and validation of potential flood hazard area using GIS-based multi-criteria analysis and satellite data-derived water index. J. Flood Risk Manag. 13(3), 1-14.
Endreny, T.A., Wood, E.F., 2003. Maximizing spatial congruence of observed and DEM-delineated overland flow networks. Int. J. Geogr. Inf. Sci. 17(7), 699-713.
Florinsky, I., 2016. Digital terrain analysis in soil science and geology. Elsevier, London, New York, Oxford, Paris.
Ghanavati, E.A., Safari, A., Beheshti Javid, E., Mansourian, E., 2014. Flood risk zonation using compilation CN model and AHP via GIS, case study: Balekhlo River Basin. Phys. Geogr. Quarterly 7(25), 67-80 (in Persian).
Ghodsypour, H., 2009. Analytic Hierarchy Process (AHP). Amirkabir University of Technology Publition, Tehran (in Persian).
Halwatura, D., Najim, M.M.M., 2013. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ Model Softw. 46, 155-162.
Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.X., Chen, W., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total Environ. 625, 575-588.
Hoseini, Y., 2021. Estimation of flood discharge in Darrehrood sub-basins of Ardebil Province using basin physiographic characteristics. Hydrogeomorphology 7(25), 83-98 (in Persian).
Ishizaka, A., Labib, A., 2011. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 38(11), 14336-14345.
Islam, A.R.M.T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K.U., Pham, Q.B., Kuriqi, A., Linh, N.T.T., 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 12(3), 101075.
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J.C., Mechler, R., Botzen, W.W., Laurens, M.B., Georg, P., Rodrigo, R., Ward, P.J., 2014. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Change. 4(4), 264-268.
Karimi Dehbakari, S., Shabani Iraqi, A., 2012. Zoning of flood potential in Shafa River Basin located in Rezvanshahr City. 4th National Scientific Conference on Student Geography, 8-9 May, Tehran, Iran (in Persian).
Koem, C., Tantanee, S., 2020. Flash flood hazard mapping based on AHP with GIS and satellite information in Kampong Speu Province, Cambodia. Int. J. Disaster Resil. Built Environ. 12(5), 457-470.
Lyu, H.M., Shen, S.L., Zhou, A., Yang, J., 2019. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 84, 31-44.
Malekian, A., Oftadegan Khuzani, A., Ashurnejad, G., 2012. Flood hazard zoning in watershed scale using fuzzy logic, case study: Akhtar Abad Watershed. Phys. Geog. Res. Quarterly 44(4), 131-152 (in Persian).
McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425-1432.
Mejía-Navarro, M., Wohl, E.E., Oaks, S.D., 1994. Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10(1-4), 331-354.
Mosavi, A., Ozturk, P., Chau, K.W., 2018. Flood prediction using machine learning models: literature review. Water 10(11), 1-40.
Munasinghe, D., Cohen, S., Huang, Y.F., Tsang, Y.P., Zhang, J., Fang, Z., 2018. Intercomparison of satellite remote sensing‐based flood inundation mapping techniques. J. Am. Water Resour. Assoc. 54(4), 834-846.
Niknejad, D., Alizadeh, A., 2006. Study of flood and its control in two sub-basins leading to Lake Urmia. Technical Workshop on Coexistence with Floods. National Committee for Irrigation and Drainage of Iran, 16 August, Tehran, Iran (in Persian).
Ogato, G.S., Bantider, A., Abebe, K., Geneletti, D., 2020. Geographic Information System (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, Oromia regional state, Ethiopia. J. Hydrol. Reg. Stud. 27, 100659.
Patra, J.P., Kumar, R., Mani, P, 2016. Combined fluvial and pluvial flood inundation modelling for a project site. Procedia Technology 24, 93-100.
Qin, C.Z., Zhu, A.X., Pei, T., Li, B.L., Scholten, T., Behrens, T., Zhou, C.H., 2011. An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture 12(1), 32-43.
Rostami, N., Kazemi, Y., 2019. Flood hazard zoning in the Ilam City using AHP and GIS. J. Spat. Analys. Environ. Hazards 6(1), 179-192 (in Persian).
Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234-281.
Saaty, T.L., 1980. The analytical hierarchy process, planning, priority. Resource Allocation RWS publications, USA.
Saaty, T.L., Vargas, L.G., 2001. Models, methods, concepts and applications of the analytic hierarchy process. Second ed, Springer New York, NY.
Saeedifar, Z., Khosroshahi, M., Jalili, A., Razavizadeh, S., Dargahian, F., Zandifar, S., Lotfinasabasl, S., Gohardust, A., Teimuri, S., Fayaz, M., 2021. Analysis of the effect of climatic factors and drought on inflow and outflow from the Khuzestan Plain in the Karun Basin. J. Water Sustain. Dev. 8(3), 43-54 (in Persian).
Saghafian, B., Eslami, A., Ghermezcheshmeh, B., 2007. A new method in mapping the spatial variation of flood indices in the waterway network. Iran-Watershed Manage. Sci. Eng. 1(2), 30-38 (in Persian).
Schumann, A.H., Funke, R., Schultz, G.A., 2000. Application of a geographic information system for conceptual rainfall–runoff modeling. J. Hydrol. 240(1-2), 45-61.
Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 512, 332-343.
Shafapour Tehrany, M., Pradhan, B., Jebur, M.N., 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment 29(4), 1149-1165.
Tong, X., Luo, X., Liu, S., Xie, H., Chao, W., Liu, S., Liu, S., Makhinov, A.N., Makhinova, A.F., Jiang, Y., 2018. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery. ISPRS J. Photogramm. Remote Sens. 136, 144-153.
Valizadeh Kamran, K., Delire Hasannia, R., Azari Amghani, K., 2019. Flood zoning and its impact on land use in the surrounding area using Unmanned Aerial Vehicles (UAV) images and GIS. J. GIS RS for Natur Res. 10(3), 59-75 (in Persian).
Voogd, J.H., 1982. Multicriteria evaluation for urban and regional planning. PhD Thesis 1 (Research TU/e /Graduation TU/e), Built Environment. Delftsche Uitgevers Maatschappij. https://doi.org/10.6100/IR102252
Wang, Y., Mitchell, B.R., Nugranad-Marzilli, J., Bonynge, G., Zhou, Y., Shriver, G., 2009. Remote sensing of land-cover changes and landscape context of the national parks: a case study of the northeast temperate network.     Remote Sens. Environ. 113(7), 1453-1461.
Yahaya, S., Ahmad, N., Abdalla, R.F., 2010. Multicriteria analysis for flood vulnerable areas in Hadejia-Jama'are River Basin, Nigeria. Eur. J. Sci. Res. 42(1), 71-83.
Yerramilli, S., 2012. A hybrid approach of integrating HEC-RAS and GIS towards the identification and assessment of flood risk vulnerability in the city of Jackson. MS. J. Geogr. Inf. Syst. 1(1), 7-16.