با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

2 دانشیار، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

3 استاد، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

4 استادیار، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد

چکیده

بهره­‌برداری فزاینده از ذخایر آب زیرزمینی و در نتیجه افت سطح ایستابی و کاهش این ذخایر، مدیریت جامع منابع آب زیرزمینی و سطحی را به‌­طور جدی مورد توجه مسئولان و برنامه‌­ریزان قرار داده است. به‌نحوی که ارزیابی و مدیریت منابع آب به‌­عنوان یکی از عوامل کلیدی توسعه جامع محسوب می­‌شود. در این پژوهش، آبخوان بویین استان اصفهان در حوزه آبخیز باتلاق گاوخونی مورد بررسی قرار می­‌گیرد. شاخص استاندارد بارش (SPI)، شاخص خشکسالی هواشناسی (RDI) و شاخص استاندارد آب زیرزمینی (GRI) در پایه‌های زمانی سه، شش، 12، 24 و 48 ماهه و شاخص سطح زیرکشت (CLI) در مقیاس سالانه محاسبه شدند. نتایج نشان داد، بیشترین همبستگی شاخص بارش استاندارد با شاخص آب زیرزمینی استاندارد در پایه‌های زمانی 18 و 24 ماهه واقع شده، بین این دو خشکسالی تاخیر فاز زمانی 1.5 تا دو ساله وجود دارد. برخلاف نتایج برخی منابع، همیشه با افزایش پایه زمانی، همبستگی بین شاخص خشکسالی هواشناسی و خشکسالی آب زیرزمینی افزایش پیدا نمی­‌کند. بررسی هم­زمان شاخص­‌های خشکسالی هواشناسی و آب زیرزمینی و شاخص سطح زیرکشت بیانگر فاصله زیاد شاخص آب زیرزمینی استاندارد با دو شاخص دیگر در سال­‌های 1383 تا 1387 است که می‌­تواند به‌دلیل مدیریت نامناسب حاکم بر منطقه باشد. در سال­‌های اخیر این سه شاخص به هم نزدیک شده­‌اند که دلیل اصلی آن اعمال مدیریت بیشتر بر مصرف آب به‌­وسیله سازمان­‌های ذی­ربط بوده است. برای تعیین مناطق همگن خشکسالی، حالت­‌های مختلف ترکیب مقیاس­‌های زمانی و مکانی با ایجاد 39 سناریو مختلف و انجام 390 هزار بار شبیه­‌سازی بررسی شد. در 90 درصد موارد هیچیک از معیارهای همگنی اقناع نشدند که نشان می­‌دهد، تکنیک گشتاورهای خطی روش مناسبی برای تعیین مناطق همگن خشکسالی آب زیرزمینی نیست که دلیل آن می‌­تواند غیرتصادفی بودن داده‌ها باشد. در نتیجه، زمانی می­توان از نتایج تکنیک‌ گشتاور خطی به خوبی بهره برد که ماهیت داده‌ها تصادفی باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Temporal and spatial analysis of drought in Boein Aquifer using drought indices and linear moment technique

نویسندگان [English]

  • Mohammad hossein Nassajian Zavareh 1
  • Hossein Malekinezhad 2
  • Mohammad reza Ekhtesasi 3
  • Mohammad Zare 4

1 PhD student, Faculty of Natural Resources and Desert Studies,,Yazd University, Iran

2 Associate Professor,Faculty of Natural Resources and Desert Studies,,Yazd University, Iran

3 Professor,Faculty of Natural Resources and Desert Studies,,Yazd University, Iran

4 Assistant Professor,,Faculty of Natural Resources and Desert Studies,,Yazd University, Iran

چکیده [English]

The increasing exploitation of groundwater reserves and consequently the drop in the water level and reduction of the reserves have seriously caught the attention of officials and planners to the integrated management of groundwater and surface water resources. The evaluation and management of water resources are considered as one of the key factors in comprehensive development. Boein Aquifer in Isfahan Province located in the Gavkhooni Basin is studied in this study. The Standard Precipitation Index (SPI), Reclamation Drought Index (RDI) and Groundwater Standard Index (GRI) in the time scales of three, six, 12, 24 and 48 months and Cultivated Land Index (CLI) in annual time scale are calculated. Results showed that the highest correlation between the SPI and GRI is in 18 and 24 months' time scale, and there is a delay of 1.5 to 2 years between these two droughts. Contrary to the results of some references, the correlation between meteorological drought index and GRI does not always increase with increasing the time scale. A synchronic study of the SPI, GRI and CLI shows a large difference between the SRI and the other two indicators in 2004-2008 periods that may be related to the poor management of the region. However, more close values obtained for these three indices in the recent years mainly due to the better management of water consumption by relevant organizations. To determine homogeneous drought regions, different combinations of temporal and spatial scales were used by creating 39 different scenarios and running 390,000 simulations. None of the heterogeneity measures were met in 90% of cases. This indicated that the linear moment technique is not a suitable method for determining homogeneous arid regions of groundwater probably due to the non-random data. Therefore, the linear moment technique will be more useful if the data is random.

کلیدواژه‌ها [English]

  • Aquifer recharge
  • CLI
  • GRI
  • Homogeny drought region
  • Linear moment
  • Precipitation
  • RDI
  • SPI
  1. Abasi, Sh., F. Ghafouri and H. Malekinezhad. 2016. Assessment of temporal and spatial variation of groundwater level relative to distance from Zayandehrud River, case study: Koohpaye-Segzi Plain of Isfahan. Iranian Water Research Journal, 10(20): 27-37 (in Persian).
  2. Abiye, T., K. Masindi, H. Mengistu and M. Demlie. 2018. Understanding the groundwater-level fluctuations for better management of groundwater resource: a case in the Johannesburg region. Groundwater for Sustainable Development, 7: 1-7.
  3. Arvin, A.A., A. Halabian and M. Baharloo. 2016. The effects of climatic oscillation and water consumption on groundwater level variations in Damene Plain. Journal of Natural Environmental Hazards, 7: 48-67 (in Persian).
  4. Babaei, H., S. Araghinejad and A. Horfar. 2011. Time interval identification of the occurrences of meteorological and hydrological droughts in Zayandeh-Rud Basin. Arid Biom Scientific and Research Journal, 1: 1-13 (in Persian).
  5. Barati, R., M. Azhdari Moghadam and M. Arami Fadafan. 2012. Regional flood frequency analysis of Kashafrood River Basin using l-moments method. Iranian Water Research Journal, 5(9): 223-228 (in Persian).
  6. Barzegari, F. and H. Malekinezhad. 2014. Linear moments application in drought prediction, case study: central catchment of Iran. Water and Soil Science, 25(2): 13-23 (in Persian).
  7. Edrisnia, S., A. Pahlavanravi, A. Moghadamneia, A. Nazari Samani and A. Amiri. 2017. Investigation of the role of structural elements on water resource abundance in Maharloo karst region using RS and GIS. Journal of Range and Watershed Management (Iranian Journal of Natural Resources, 70(2): 263-275 (in Persian).
  8. Ekrami, M., H. Malekinezhad and M. Ekhtesasi. 2014. Investigating the effect of climatic and hydrological droughts on groundwater resources. Iran-Watershed Management Science and Engineering, 7: 47-54.
  9. Eslamian, S., H. Hassanzadeh, J. Abedi-Koupaei and M. Gheysari. 2012. Application of L-moment for regional frequency analysis of monthly drought indexes. International Journal Hydraulic Engineering ASCE, 17: 32-42 (in Persian).
  10. Hosking, J.R.M. and J.R. Wallis. 1990. Analysis and estimation of distributions using linear combinations of order statistics. Journal of Statistical Society Series B, 52(2): 105-124 .
  11. Imani, M. and A. Talebi. 2011. Investigating the effects of drought on changes in the groundwater table surface of Bahabad Plain in Yazd using GRI and SPI indicators. 4th Iranian Water Resources Management Conference, Amirkabir University of Technology, Tehran (in Persian).
  12. Kahsay, K., S. Murlidhar and S. Hatiye. 2018. Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze Basin, Ethiopia. Groundwater for Sustainable Development, 6: 121-133.
  13. Lacruz, J., C. Garcia and E. Tejeda. 2017. Ground water level responses to precipitation variability in Mediterranean insular aquifers. Journal of Hydrology, 552: 516-531.
  14. Mckee, T.B., N.J. Doesken and J. Kleist. 1993. The relationship of drought frequency and duration to time scales. Preprints 8th Conference on Applied Climatology, American Meteorological Society. 17-22 January, California, USA, pp. 179-184.
  15. Naseri, M. 2014. Development of some drought index. MSc Thesis, Esfahan University of Technology, 125 pages (in Persian).
  16. Poormohammadi, S. and H. Malekinezhad. 2012. Classification of homogeneous climatic regions under the impact of climate change and greenhouse gas emissions scenarios using L-moments technique in Iran. Journal of Watershed Management Research, 4(8): 58-76 (in Persian).
  17. Rezaei, A. 2011. Hydrological homogeneity of basins. Watershed Management Researches, 85: 11-21 (in Persian).
  18. H., N. Khanmohammadi, M. Montazeri and G. Behmanesh. 2018. Evaluating the selection of the most ‌suitable probability distribution function for using the RDI and SPI drought indices. Water and Soil Science, 28(1): 29-40 (in Persian).
  19. Sadatinezhad, S.J., S.H. Alavinia, R. Abedi, A. Honarbakhsh and K. Abdollahi. 2016. Frequency analysis of regional meteorological drought in Karun-1 Basin of Iran. Journal of Watershed Management Research, 6(12): 108-117 (in Persian).
  20. Sakakibara, K., M. Tsujimura, X. Song and J. Zhang. 2017. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: application of the multi-tracer approach to the Taihang Mountains, North China. Journal of Hydrology, 545: 132-144.
  21. Shamsaei, A. 2014. Hydraulic water flow in porous environments, volume 3: application of mathematical-computer models. Amirkabir University of Technology Publications, 98 pages (in Persian).
  22. Tabari, H., J. Nikbakht and P.H. Talace. 2013. Hydrological drought assessment in northwestern Iran based on Streamflow Drought Index (SDI). Water Resources Management, 27: 137-151 (in Persian).
  23. Tigkas, D., H. Vangelis and G. Tsakiris. 2012. Drought and climate change impact on streamflow in small watersheds. Science of the Total Environment, 440: 33-41.
  24. Zarezadeh Mehrizi, M. and S. Morid. 2011. Application of reservoir level and meteorological indices for drought monitoring, case study: Zayandehrud water system. Iranian Journal of Soil and Water Research, 42(2): 13-17 (in Persian).
  25. Zare, M., S. Poormohammadi and H. Sodaizade. 2016. Climatic parameters aridity indices reference evapotranspiration statistical distribution Iran. Geography and Environmental Planning, 27(2): 103-118 (in Persian).
  26. Zamani, R., H. Tabari and P. Willems. 2015. Extreme streamflow regional and robabilistic (Iran): drought analyses in Karkheh River Basin. Natural Hazards, 76: 327-346 (in Persian).