با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

2 فارغ‌‎التحصیل کارشناسی مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

چکیده

در مدل‌های هیدرولوژیک به‌منظور مدل‌سازی بهتر فرایند بارش رواناب نیاز است تا مدل با استفاده از داده‌های مشاهداتی واسنجی شود. در فرایند واسنجی مدل‌های هیدرولوژیک، علاوه ­بر کیفیت داده‌های مشاهدات و الگوریتم بهینه‌سازی تابع هدف نیز بر کارایی مدل موثر است. در اغلب پژوهش‌ها، معیارهای آماری مثل NSE و RMSE به‌­عنوان تابع هدف در فرایند واسنجی مدل‌های هیدرولوژیک استفاده می‌شوند. با توجه به ساختار مدل و روابط مورد استفاده در هر یک از معیارهای ارزیابی، هر یک از آن­‌ها در شبیه‌سازی بخشی از هیدروگراف کارایی مناسبی دارند. یکی از پارامترهای مهم هر حوضه که به نوعی نشان‌دهنده عکس‌العمل حوضه برای مقادیر دبی مختلف می‌باشد، منحنی تداوم جریان است. در این پژوهش، اقدام به بررسی و مقایسه کارایی توابع هدف مبتنی بر منحنی تداوم جریان و توابع هدف آماری در بهینه‌سازی پارامترهای مدل هیدرولوژیکی HBV در حوضه زیارت استان گلستان شد. پس از وارد کردن داده‌های ورودی به مدل، با استفاده از الگوریتم DDS مدل برای هر تابع هدف به تعداد 100 مرتبه بهینه شد. پس از بهینه‌سازی پارامترهای مدل، این پارامترها به مدل معرفی و مقادیر دبی برای دوره‌های واسنجی و اعتبارسنجی برآورد شد. نتایج نشان داد، معیارهایی مانند NSE و KGE در برآورد داده‌های پیک، معیارهایی از قبیل RMSE و MAE در برآورد داده‌های متوسط و معیارهای مبتنی بر منحنی تداوم جریان در برآورد دبی‌های کمینه عملکرد بهتری داشته‌اند. در شبیه‌سازی بخش‌های مختلف هیدروگراف دبی روازنه روش مبتنی بر منحنی تداوم جریان بهترین عملکرد را داشت، معیارهای RMSE و MAE در رتبه بعدی قرار داشته و معیارهای  NSE و KGE عملکرد مناسبی نداشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation the efficiency of flow duration curve based and statistical criteria objective functions in calibrating hydrological model

نویسندگان [English]

  • Aboalhasan Fathabadi 1
  • Vahid Anamoradi 2

1 Assistant Professor, Faculty of Agricultural and Natural resources,, Gonbad Kavous University, Iran

2 BSc, Faculty of Agricultural and Natural resources,, Gonbad Kavous University, Iran

چکیده [English]

In hydrological models, in order to better model the runoff process, it is necessary to calibrate the model using observational data. In the process of calibration of hydrological models, in addition to the quality of observation data and the optimization algorithm, the objective function also affects the efficiency of the model. In most studies, statistical criteria such as NSE and RMSE are used as objective functions in the calibration process of hydrological models. Given the structure of the model and the relationships used in each of the evaluation criteria, each of them has good performance in simulating a part of the hydrograph. One of the important parameters of each basin, which is a kind of basin reaction indicator for different discharge values, is the Flow Continuity Curve (FDC). In this study, the efficiency of objective functions based on flow continuity curve and statistical objective functions in optimizing the parameters of the HBV hydrological model in Ziyarat Watershed of Golestan Province was investigated and compared. After introducing input data to model using DDS algorithm, model was calibrated 100 times for each objective function. When model was calibrated, using optimized parameter sets model output for calibration and validation period was obtained. Results showed that criteria such as NSE and KGE have better performance in predicting high flows, criteria such as RMSE and AME predicted moderate flow discharge better and criteria based on FDC had better performance in predicting low flows. In prediction different parts of hydrograph FDC objective function has the best performance, RMSE and MAE were in sound order and NSE and KGE did not have suitable performance.

کلیدواژه‌ها [English]

  • Flow duration curve
  • HBV model
  • High flow
  • Low flow
  • Optimizing
  1. AghaKouchak, A. and E. Habib. 2010. Application of a conceptual hydrologic model in teaching hydrologic processes. International Journal of Engineering Education, 26: 963–973.
  2. Bekele, E.G. and J.W. Nicklow. 2007. Multi-objective automatic calibration of SWAT using NSGA-II. Journal of Hydrology, 341(3): 165–176.
  3. Carrillo, G., P.A. Troch, M. Sivapalan, T. Wagener, C. Harman and K. Sawicz. 2011. Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 15: 3411–3430.
  4. Chadalawada, J. and V. Babovic. 2019. Review and comparison of performance indices for automatic model induction. Journal of Hydroinformatics, 21(1): 13–31.
  5. Criss, R.E. and W.E. Winston. 2008. Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723–2725.
  6. Gupta, H.V., H. Kling, K.K. Yilmaz and G.F. Martinez. 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377: 80–91.
  7. Gupta, H., S. Sorooshian and P. Yapo. 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resources Research, 4: 751–763.
  8. Gupta, H.V. and H. Kling. 2011. On typical range, sensitivity and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10): 1-3.
  9. Krause, P., D.P. Boyle and F. Bäse. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geoscience, 5: 89–97.
  10. Madsen, H. 2000. Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. Journal of Hydrology, 235(3): 276–288.
  11. Madsen, H. 2003. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple Advances in Water Resources, 26(2): 205-216.
  12. Mathevet, T., C. Michel, V. Andreassian and C. Perrin. 2006. A bounded version of the Nash–Sutcliffe criterion for better model assessment on large sets of basins. IAHS Publication, 567 pages.
  13. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models 1. A discussion of principles. Journal of Hydrology, 10: 282– 290.
  14. Nosrati, K. and S. Jalali. 2017. Estimating uncertainty and sediment yield contribution of forest roads in Ziarat Drainage Basin, Gorgan Province using geochemical tracers. Journal of Range and Watershed Management, 69(3): 753-764 (in Persian).‎
  15. Pfannerstill, M., B. Guse and N. Fohrer. 2014. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510: 447-458.
  16. Pool, S., M. Vis and J. Seibert. 2018. Evaluating model performance: towards a nonparametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 2018: 1941-1953 .
  17. Price, K., S.T. Purucker, S.R. Kraemer and J.E. Babendreier. 2012. Tradeoffs among watershed model calibration targets for parameter estimation. Water Resources Research, 48(10): W10542.
  18. Siebert, J. and M.J.P. Vis. 2012. Teaching hydrological modeling with a user-friendly catchment runoff model software Hydrology and Earth System Sciences, 16: 3315-3325.
  19. Shafii, M. and B.A. Tolson. 2015. Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research, 51: 3796–3814.
  20. Schaefli, B. and H.V. Gupta. 2007. Do Nash values have value? Hydrological Process, 21(15): 2075–2080.
  21. Tolson, B.A. and C.A. Shoemaker. 2007. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43: W01413. doi: 10.1029/2005WR004723.
  22. Van Werkhoven, K. and T. Wagener, P. Reed and Y. Tang. 2009. Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Advances in Water Resources, 32(8): 1154–1169.
  23. Vis, M., R. Knight, S. Pool, W. Wolfeand and J. Seibert. 2015. Model calibration criteria for estimating ecological flow characteristics. Water, 7: 2358–2381.
  24. Westerberg, I.K., J.L. Guerro, P.M. Younger, K.J. Beven, J. Seibert, S. Halldin and C.Y. 2011. Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences, 15: 2205–2227.
  25. Yadav, M., T. Wagener and H. Gupta. 2007. Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in Water Resources, 30: 1756–1774.
  26. Yilmaz, K.K., H.V. Gupta and T. Wagener. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research, 44: W09417.
  27. Zhang, H., G.H. Huang, D. Wang and X. Zhang. 2011. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources, 34(10): 1292–1303.