با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی و مدیریت منابع آب دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

2 استادیار گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

چکیده

تخمین درست توزیع مکانی تبخیر تعرق واقعی (ET) روزانه، موجب ارتقاء کارائی مدیریت منابع آب بخصوص در مناطقی که با محدودیت این منابع مواجهند، می‌شود. در پژوهش حاضر، ET با استفاده از الگوریتم بیلان انرژی در سطح زمین (SEBAL) و مدل تجربی فائو-پنمن- مانتیث(FPM) برآورد و سپس با مقادیر بدست آمده از روش تشت تبخیر، مقایسه و صحت‌سنجی شد. از آن‌جا که عوامل مختلفی بر مقادیر ET تأثیرگذارند، در نهایت با انجام آنالیز حساسیت، میزان حساسیت مقادیر ET الگوریتم SEBAL نسبت به تغییر پارامترهای ورودی، بررسی شد. در این راستا، الگوریتم SEBAL با استفاده از داده‌های ماهواره Landsat8 (سنجنده OLI و TIRS) در مقیاس روزانه برای دوره زمانی 25/7/2018 تا 11/9/2018 اجرا شد. نتایج SEBAL نشان داد که مقادیر شاخص‌های SEE،RMSE ،R2 ، نسبت به اندازه‌گیری‌های تشت تبخیر به ترتیب برابر 27/1، 76/0 و 77/0 میلی‌متر بر روز و برای روش تجربی FPMبه ترتیب برابر با 91/0، 6/0 و 92/0 میلی‌متر بر روز است.

کلیدواژه‌ها

عنوان مقاله [English]

Verification of Estimated Evapotranspiration by Surface Energy Balance Algorithm for Land and the information of OLI and TIRS sensors

نویسندگان [English]

  • Elham Mahmodzadeh 1
  • Sedigheh Anvari 2

1 MSc Graduate in Engineering and Water Resources Management, Graduate University of Advanced Technology

2 Assistant Prof. Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran

چکیده [English]

The accurate estimation of daily Evapotranspiration (ET) improves the efficiency of water resources management especially in areas where suffers from water scarcity. In the present study, ET was estimated using surface energy balance algorithm for land (SEBAL) and the experimental model of FAO-Penman-Monteith (FPM) and finally compared and verified with those calculated from pan evaporation method. Since many climatic factors affect the ET values, the sensitivity analysis of SEBAL inputs variables was finally cerried out to determine the key affecting parameters. In this regard, by SEBAL model and emplying the satellite data of Landsat 8 (OLI and TIRS sensors), the ET values were estimated on a daily scale for the time period 2018/07/25 to 2018/09/11. Results of SEBAL model showed that the values of SEE, RMSE and R2 indices were equal to 1.27, 0.76 and 0.77 mm /day and 0.91, 0.6 and 0.92 mm /day, while compared with those of FPM and pan evaporation methods, respectively.

کلیدواژه‌ها [English]

  • Sensitivity Analysis
  • Remote Sensing
  • Landsat 8
  • pan evaporation
  • FAO-Penman-Monteith
  1. Alizadeh, A. 2003. Principles of applied hydrology. Imam Reza University Press, 735 pages (in Persian).
  2. Allen, R.G., M. Tasumi, R. Trezza, R. Waters and W. Bastiaanssen. 2002. SEBAL, Surface Energy Balance Algorithms For Land. Advance Training and User’s Manual, Idaho Implementation, Version 1, 98 pages.
  3. Bastiaanssen, W. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2): 87-100.
  4. Bastiaanssen, W., M. Menenti, R. Feddes and A. Holtslag. 1998. A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation. Journal of Hydrology, 212-213: 198-212.
  5. Bastiaanssen, W., M.D. Ahmad and Y. Chemin. 2002. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research, 38(12): 1273–1281.
  6. Cammalleri, C., G. Ciraolo, G. La Loggia and A. Maltese. 2012. Daily evapotranspiration assessment by means of residual surface energy balance modeling: a critical analysis under a wide range of water availability. Journal of Hydrology, 452–453: 119–129.
  7. Ghaemi, M., M. Raeini Serjaz and M. Mousavi Baygi. 2012. Comparing wheat evapotranspiration estimated by Bowen Ratio Energy Balance (BREB) method with result of lysimeter. Journal of Water and Soil, 1293(5): 1152-1160 (in Persian).

8.     Karbasi, M., M. Moghadam, J. Nikbakht and A. Kaviani. 2016. Estimation of crop actual evapotranspiration using SEBAL algorithm, case study: Khoramdareh region at Zanjan Province. Ecohydrology, 3(3): 427-437.

  1. Karimi, A.R. 2011. Evaluation of remote sensing algorithms (SEBAL and SEBS) for calculation of evapotranspiration using satellite images. MSc Thesis, Razi University, Kermanshah, 105 pages (in Persian).
  2. Lane, S.N., K.S. Richards and J.H. Chandler. 1994. Distributed sensitivity analysis in modelling environmental systems. Proceedings of the Royal Society, 447: 49-63.
  3. Long, D., V.P. Singh and Z.L. Li. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research: Atmospheres, 116(D21): 22-43.
  4. Malekinejhad, H. and S. Poormohammadi. 2008. Study the role of climatic parameters in evaporation phenomenon at heterogeneous zones of arid and semi-arid regions of Iran. Water Resource Conference, Tabriz, 185 pages (in Persian).
  5. Mardikis, M.G., D.P. Kalivas and V.J. Kollias. 2005. Comparison of interpolation methods for the prediction of reference evapotranspiration, an application in Greece. Water Resources Management, 19: 251-278.
  6. McMahon, T.A., M.C. Peel, L. Lowe, R. Srikanthan and T.R. McVicar. 2013. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences, 17(4): 1331–1363.
  7. Rahimi, S., M.A. Gholami Sefidkouhi, M. Raeini-Sarjaz and M. Valipour. 2015. Estimation of actual evapotranspiration by using MODIS images, a case study: Tajan Catchment. Archives of Agronomy and Soil Science, 61(5): 695-709.
  8. Ramezani Khojeen, A., M.M. Kheirkhah Zarkesh, P. Daneshkar Arasteh, A. Moridi and R. Alimohammadi. 2016. Sensitivity analysis of calculated evapotranspiration using daily energy balance model and comparing it with SEBAL model. Water Resources Research, 185(1): 18-28 (in Persian).
  9. Ramos, J.G., C.R. Cratchley, J.A. Kay, M.A. Casterad, A. Martinez-cob and R. Dominguez. 2009. Evaluation of satellite evapotranspiration estimates using ground-meteorological data available for the Flumen District into the Ebro Valley of N.E. Spain. Agricultural Water Management, 96(4): 638-652.
  10. Rana, G. and N. Katerji. 1998. A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theoretical and Applied Climatology, 60(1): 141-149.
  11. Steele, D., B. Thoreson, D. Hopkins, B. Clark, S. Tuscherer and R. Gautam. 2015. Spatial mapping of evapotranspiration over Devils Lake Basin with SEBAL: application to flood mitigation via irrigation of agricultural crops. Irrigation Science, 33(1): 15-29.
  12. Sharifan, H. and B. Ghahram. 2006. Evaluation and comparison of estimated refrence evapotranspiration from evaporation pan with ETO standard method in Gorgan. Journal of Agricultural Sciences and Natural Resources, 13(5): 18-28 (in Persian).