با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 زنجان دانشگاه زنجان

2 شهرک سعدی انتهای فاز جنب سوپر مارکت مانی روبروی آپارتمان ویان

3 دانشگاه خوارزمی

چکیده

درک رفتار پدیده‌ها نیازمند توجه به همه ابعاد آن است و یکی از راه‌های درک پیچیدگی‌های آن‌ها مدل‌سازی است. رطوبت سطحی خاک، متغیّر کلیدی برای توصیف خشک‌سالی، تبادلات آب و انرژی بین زمین و هوا کره و همچنین ارزیابی شرایط محصولات کشاورزی است. رطوبت خاک هم از متغیرهای محیطی تأثیر می‌پذیرد و هم بر بسیاری از متغیرهای محیطی ازجمله رواناب، فرسایش خاک و تولید محصولات تأثیر می‌گذارد اما به دلیل ثابت نبودن شرایط مکانی و زمانی پارامترهای محیطی به‌شدت تغییرپذیر است. هدف از این مقاله واکاوی و استخراج مدل مکانی پراکندگی رطوبت خاک پس از بارش‌های بیش از نرمال سال آبی97-98 در استان کردستان است. در این راستا پس از واکاوی نقشه پراکندگی رطوبت خاک در بازه زمانی موردمطالعه مستخرج از سامانه گوگل ارث اینجین به‌عنوان متغیر وابسته و لایه‌های بارش، آب معادل برف، شاخص پوشش گیاهی مستخرج از سامانه گوگل ارث انجین و همچنین شاخص رطوبت توپوگرافی و به‌عنوان متغیرهای مستقل انتخاب گردید و سپس با استفاده از مدل رگرسیون کلی (OLS) و رگرسیون موزون جغرافیایی (GWR) به مدل‌سازی مکانی اقدام شد. بر اساس معیارهای ارزیابی، نتایج نشان داد مدل GWR با=0.74 R^2 قدرت تبیین و برآورد بهتری نسبت به مدل رگرسیون کلی باR^2=0.68 دارد. بر اساس رگرسیون کلی، عوامل مکانی بارش و رطوبت توپوگرافی بیش‌ترین اثر مثبت و تبخیر و تعرق اثر منفی بر رطوبت خاک در محدوده موردمطالعه دارد. بر اساس نتایج مدل GWR ، متغیر آب معادل برف در نواحی کوهستانی شمال استان، بیش‌ترین تأثیر و تبخیر و تعرق کم‌ترین اثر را بر رطوبت خاک داشته‌اند. با استفاده از مدل مکانی به‌دست‌آمده می‌توان مناطق کم یا پر رطوبت خاک را در راستای شناسایی پتانسیل‌ها محیطی و بهبود فرآیند تصمیم‌گیری، تخصیص و توزیع مکانی ارائه خدمات کشاورزی شناسایی کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Spatial Analysis of Soil Moisture after Excessive Normal Precipitation of 1997-98 with Linear Modeling of Environmental Variables and Satellite Images

نویسندگان [English]

  • hossin mosavi 1
  • mohamad kamangar 2
  • alireza karbalayy 3

1 zanjan

2 abfa

3 kharazmi

چکیده [English]

Understanding the behavior of phenomena requires attention to all its dimensions, and one way to understand their complexities is modeling. Soil surface moisture is a key variable for describing drought, water, and energy exchanges between Korea and the air, as well as assessing crop conditions. Soil moisture is affected by both environmental variables and many environmental variables such as runoff, soil erosion, and crop production, but is highly variable due to unstable spatial and temporal conditions. The purpose of this paper is to investigate, extract and evaluate the spatial model of soil moisture dispersal after more than normal rainfall in 1979-98 in Kurdistan province. In this regard, after analyzing soil moisture dispersion as dependent variable and precipitation variables, snow water equivalent, topographic moisture index and vegetation index were selected as independent variables. Then, using a general regression model (OLS) and geographically weighted regression (GWR), spatial modeling was performed. Based on the evaluation criteria, the results showed that the GWR model with R2 = 0.74 has better explanatory power and better estimation than the general regression model with R2 = 0.68. According to the results of the GWR model, snow water equivalent variable in the northern mountainous regions had the highest effect on evapotranspiration and the least effect on soil moisture. The obtained spatial model can identify low or moist soil areas in order to identify environmental potentials and improve decision making, allocation and spatial distribution of agricultural services.

کلیدواژه‌ها [English]

  • Soil moisture
  • Drought
  • Autocorrelation
  • Spatial regression
  • Kurdistan
  1. Amani, M., S. Parsian, S. Mir Mazloumi and O. Aieneh. 2016. Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 73: 176-186 (in Persian).
  2. Asakereh, H. 2004. Spatial change modeling of climatic data a case study: annual precipitation of Esfahan Province. Geographical Research, 19(74): 213-232 (in Persian).
  3. Asakereh, H. and R. Razmi. 2018. Spatial modeling of summer precipitation in north-west of Iran. Researches in Geographical Sciences, 18(50): 155-178 (in Persian).
  4. Asakereh, H. 2011. Fundamentals of statistical climatology. Zanjan University Press, 545
  5. Asakereh, H. and Z. Seifipour. 2013. Spatial modeling of annual precipitation in Iran. Geography and Development Iranian Journal, 10(29): 15-30 (in Persian).
  6. Babaeian, E., M. Homaee and A. Norouzi. 2013. Estimation of surface soil moisture using ENVISAT ASAR radar images. Water Research in Agriculture, 27(4): 622-611 (in Persian).
  7. Brown, S., L. Versace, V. Laurenson, D. Ierodiaconou, J. Fawcett and S. Salzman. 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling and Assessment, 17(3): 241-254.
  8. Erfanian, M., A. Alijanpour and M. Hosseink. 2013. An introduction to multiple regression methods (GWR and OLS) for modeling the land use effects on water quality. Extension and Development of Watershed Management, 1: 18-29 (in Persian).
  9. Falloon, P., D. Bebber, J. Bryant, M. Bushell, A. Challinor, J. Dessai and A.K. Koehler. 2015. Using climate information to support crop breeding decisions and adaptation in agriculture. World Agriculture, 5(1): 25-43.
  10. Gao, L., M. Shao. X. Peng and D. Shey. 2015. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. Catena, 132: 29-36.
  11. Kerlinger, P. 2005. Multiple regressions in behavioral research. Samt Press, Tehran, 534 pages.
  12. Khanmohammadi, F., M. Homaee and A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Soil and Water Resources Conservation, 4: 37-45 (in Persian).
  13. Koohbanani, H. and R. Yazdani. 2019. Mapping the moisture of surface soil using Landsat 8 imagery, case study: Suburb of Semnan City. Geography and Sustainability of Environment, 8(3): 65-77 (in Persian).
  14. Lai, X., Q. Zhu, Z. Zhou and K. Liao. 2017. Influences of sampling size and pattern on the uncertainty of correlation estimation between soil water content and its influencing factors. Journal of Hydrology, 555: 41-50.
  15. Lee, Y., C. Jung and S. Kim. 2019. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agricultural Water Management, 213: 580-593.
  16. Lu, B., P. Harris, M. Charlton and C. Brunsdon. 2015. Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences, 26: 109-114.
  17. Luca, C., B. Si and R. Farrell. 2007. Upslope length improves spatial estimation of soil organic carbon content. Canadian Journal of Soil Science, 87(3): 291-300.
  18. Mekonnen, F. 2009. Satellite remote sensing for soil moisture estimation: Gumara Catchment, Ethiopia. MSc Thesis, WREM Department of ITC, Enschede, the Netherlands, 127
  19. Saghafian, B., A. Shokoohi and T. Raziei. 2003. Drought spatial analysis and development of severity-duration-frequency curves for an arid region. International Association of Hydrological Sciences, 278: 305-311.
  20. Sharma, V., A. Irmak, I. Kabenge and S. Irmak. 2011. Application of GIS and geographically weighted regression to evaluate the spatial non-stationarity relationships between precipitations vs. irrigated and rainfed maize and soybean yields. Transactions of the ASABE, 54(3): 953-972.
  21. Tabatabaeenejad, A., M. Burgin, X. Duan and M. Moghaddam. 2014. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing, 53(2): 645-658.
  22. Usman, U., L. Aliyu and M.K. Aminu. 2015. Study of the geographically weighted regression application on climate data. Mathematical Theory and Modeling, 5: 8-21.
  23. Van Loon, F., K. Stahl, G. Baldassarre, J. Clark, S. Rangecroft, N. Wanders and R. Uijlenhoet. 2016. Drought in a human-modified world: reframing drought definitions understanding and analysis approaches. Hydrology and Earth System Sciences, 20(9): 3631–3650.
  24. Vereecken, H., A. Huisman, Y. Pachepsky, C. Montzka, J. Van Der Kruk, H. Bogena and J. Vanderborght. 2014. On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516: 76-96.
  25. Wang, Q., J. Ni and J. Tenhunen. 2005. Application of geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14(4): 379-393.
  26. Xu, G., T. Zhang, Z. Li, P. Cheng and S. Cheng. 2017. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau. Catena, 158: 20-29.
  27. Yagci, L., L. Di and M. Deng. 2013. The effect of land-cover change on vegetation greenness-based satellite agricultural drought indicators: a case study in the southwest climate division of Indiana. International Journal of Remote Sensing, 34(20): 6947-6968.
  28. Yoshioka, M., S. Takakura, T. Ishizawa and N. Sakai. 2015. Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. Journal of Applied Geophysics, 114: 134-145.