با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو

2 دانشیار گروه مهندسی آب

3 استادیار گروه مهندسی آب

4 استادیار گروه مهندسی آب، دانشگاه لرستان

چکیده

پیش‌بینی جریان رودخانه‌ها یکی از مهم‌ترین موارد کلیدی در مدیریت و برنامه‌ریزی منابع آب‌ به‌ویژه اتخاذ تصمیمات صحیح در مواقع سیلاب و بروز خشک‌سالی‌ها است. برای پیش‌بینی میزان جریان رودخانه‌ها رویکردهای متنوعی در هیدرولوژی معرفی‌شده است که مدل‌های هوشمند از مهم‌ترین آن‌ها می‌باشند. در این پژوهش کاربرد مدل هیبریدی ماشین بردار پشتیبان_ موجک به منظور برآورد دبی رودخانه های حوضه آبریز دز براساس آمار آبدهی روزانه ایستگاه‌های هیدرومتری واقع در بالادست سد طی دوره آماری(1397-1387) مورد بررسی و ارزیابی قرار گرفته و کارایی آن با مدل ماشین بردار پشتیبان مقایسه شد. معیارهای ضریب تبیین، ریشه میانگین مربعات خطا، میانگین قدر مطلق خطا و ضریب نش ساتکلیف برای ارزیابی و مقایسه مدل‌ها مورد استفاده قرار گرفت. نتایج نشان داد ساختارهای ترکیبی نتایج قابل قبولی در مدل‌سازی دبی رودخانه ارائه می نمایند. همچنین مقایسه مدل‌ها طبق معیارهای ارزیابی نشان داد مدل هیبریدی ماشین بردار پشتیبان-موجک عملکرد بهتری در پیش‌بینی جریان داشته و می‏تواند در زمینه پیش بینی دبی روزانه جریان مفید باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Application of Wavelet Support Vector machine (WSVM) model in Predicting River Flow (Case study: Dez basin)

نویسندگان [English]

  • Reza Dehghani 1
  • hassan torabi 2
  • hojatolah younesi 3
  • babak shahinejad 4

1 Student

2 Associate Professor, Department of Water Engineering

3 Assistant Professor of Water Engineering Department

4 Assistant Professor Department of Water Engineering

چکیده [English]

River flow prediction is one of the key issues in the management and planning of water resources, in particular the adoption of proper decisions in the event of floods and droughts. To predict the flow rate of rivers, various approaches have been introduced in hydrology, the most important of which are the intelligent models. In this study, a hybrid, model wavelet- support vector machine, was applied to estimate the discharge of Dez river basin based on the daily discharge statistics provided by the hydrometric stations located at the upstream of the dam during the statistical period (2008-2018) and its performance was compared with the support vector machine model. The correlation coefficients, root mean square error, and mean absolute error was used for evaluation and a comparison of the performance of models. The results showed that the hybrid structures presented acceptable outcomes in the modeling of river discharge. A comparison of models also showed that the hybrid model of wavelet -support vector machine has a better performance in forecasting the flow. In conclusion, the use of the WSVM model could be effective in estimating flood peak discharge.

کلیدواژه‌ها [English]

  • Forecasting
  • Dez Basin
  • Support Vector Machine
  • Wavelet
  1. Adnan, R., Z. Liang, S. Heddam, M. Kermani, O. Kisi and B. Li. 2019. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology, 19(4): 432-448.
  2. Ahmadi, F., F. Radmanesh and R. Mirabasi. 2015. Comparing the performance of support vector machines and Bayesian networks in predicting daily river flow, case study: Barandoozchay River. Soil and Water Conservation Research, 22(6): 171-186 (in Persian).
  3. Alizadeh, F., A. Gharamaleki, M. Jalilzadeh and A. Akhoundzadeh. 2020. Prediction of river stage-discharge process based on a conceptual model using EEMD-WT-LSSVM approach. Water Resources, 47: 41-53.
  4. Babaali, H.R. and R. Dehghani. 2019. Evaluation the performance of wavelet neural network models in estimation of daily discharge. Irrigation Science and Engineering, 42(3): 105-116 (in Persian).
  5. Basak, D., S. Pal and D.C. Patranabis. 2007. Support vector regression. Neural Information Processing, 11: 203-225.
  6. Chen, S.T. and P.S. Yu. 2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340(2): 63-77.
  7. Danandeh Mehr, A. and M.R. Majdzadeh. 2009. Prediction of daily discharge trend of river flow based on genetic programming. Journal of Water and Soil, 24(2): 325-333 (in Persian).
  8. Eskandari, A., A. Solgi and H. Zarei. 2018. Simulating fluctuations of groundwater level using a combination of support vector machine and wavelet transform. Irrigation Science and Engineering, 41(1): 165-180 (in Persian).
  9. Ghorbani, M.A., R. Khatibi, A. Geol, M.H. Fazelifard and A. Azani. 2016. Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences, 75(4): 675-685.
  10. Ghorbani, M.A., Khatibi,A. Geol,M.H. Fazelifard and A. Azani.2016. Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences, 75(8): 685-679.
  11. Ghorbani, M.A., R.C. Deo, V. Karimi, Z.M. Yassen and O. Terzi. 2018. Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 32(6): 1683-1697.
  12. Ghorbani, M.A., R. Khatibi, V. Karimi, Z.M. Yaseen and M. Zounemat-Kermani. 2018. Learning from multiple models using artificial intelligence to improve model prediction accuracies: application to river flows. Water Resource Management, 32(13): 4201-4215.
  13. Huang, S., J. Chang, Q. Huang and Y. Chen. 2014. Monthly streamflow prediction using modified EMD-based support vector machine. Journal of Hydrology, 511(4): 764-775.
  14. Kisi, O. and J. Shiri. 2012. River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Computers and Geosciences, 43(4): 73-82.
  15. Kisi, O. and A. Guven. 2010. A machine code-based genetic programming for suspended sediment concentration estimation. Advanced in Engineering Software, 41(7): 939-945.
  16. Kisi, O., M. Karahan and Z. Sen. 2006. River suspended sediment modeling using fuzzy logic approach. Hydrological Processes, 20(2): 4351-4362.
  17. Komasi, M. and S. Sharghi. 2017. Application of backup vector machine and wavelet conversion algorithm for modeling rainfall-runoff process, case study: Aqchay, Iran. Iranian Water Research Journal, 11(2): 51-60 (in Persian).
  18. Lin, J.Y., C.T. Cheng and K.W. Chau. 2006. Using support vector machines for long-term discharge prediction. Hydrology Sciences Journal, 51(3): 599–612.
  19. Liong, S.Y. and C. Sivapragasam. 2002. Flood stage forecasting with support vector machines. Journal of the American Water Resources Association, 38(4): 173–186.
  20. Misra, D., T. Oommen, A. Agarwa, S.K. Mishra and A.M. Thompson. 2009. Application and analysis of support vector machine-based simulation for runoff and sediment yield. Biosystems Engineering, 103(3): 527–535.
  21. Nagy, H., K. Watanabe and M. Hirano. 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulics Engineering, 128(3): 558-559.
  22. Salehi, M., F. Radmanesh, H. Zarei, B. Mansouri and A. Solgi. 2016. A combined time series–wavelet model for prediction of ground water level, case study: Firuzabad Plain. Irrigation Science and Engineering, 41(4): 1-16 (in Persian).
  23. Sedighi, F., M. Vafakhah and M.R. Javadi .2016. Rainfall–runoff modeling using support vector machine in snow-affected watershed. Arabian Journal for Science and Engineering, 41(10): 4065-4076.
  24. Shin, K.S., T.S. Lee and H.J. 2005. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(4): 127-135.
  25. Vapnik, V. and A. Chervonenkis. 1991. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3): 283-305.
  26. Vapnik, V.N. 1995. The nature of statistical learning theory. Springer, New York, 201 pages.
  27. Vapnik, V.N. 1998. Statistical learning theory. Wiley, New York, 768 pages.
  28. Wang, D., A. Safavi and J.A. Romagnoli. 2000. Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal, 46(4): 1607-1615.
  29. Yoon, H., S.C. Jun, Y. Hyun, G.O. Bae and K.K. Lee. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396(4): 128–138.
  30. Zhao, X., X. Chen, Y. Xu, D. Xi, Y. Zhang and X. Zheng. 2017. An EMD-based chaotic least squares support vector machine hybrid model for annual runoff forecasting. Water, 9(3): 153-164.