با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک

2 دانشیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک

3 استادیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک

چکیده

خشکسالی پدیده ای است طبیعی که تقریبا در تمامی اقالیم جهان رخ میدهد. اثرات این پدیده خزنده و آرام در مناطق خشک و نیمه خشک به دلیل بارندگی سالانه کمتر شان، بیشتر است. در مقابل روش های سنتی که مبتنی بر مشاهدات ایستگاه های هواشناسی هستند و بیشتر به بررسی خشکسالی هواشناسی می پردازند، استفاده از تکنیک سنجش از دور و تصاویر ماهواره ای به عنوان یک ابزار مفید جهت پایش خشکسالی کشاورزی مورد توجه قرار گرفته است. در تحقیق حاضر هدف مقایسه و ارزیابی پایش خشکسالی کشاورزی در حوضه آبریز دریاچه ارومیه با استفاده از شاخص های سنجش از دور پوشش گیاهی VCI، VHI، TCI طی سال های 1379 تا 1390 با استفاده از سنجده مادیس می‌باشد. بدین منظور ابتدا شاخص NDVI از روی تصاویر مادیس طی ماه‌های خرداد، تیر ، مرداد و شهریور محاسبه گردید. سپس با مقایسه میانگین این شاخص طی ماه‌های مذکور،‌ ماه شهریور با بیشینه مقدار به عنوان ماه معرف برگزیده شد. با توجه به حداقل و حداکثر شاخص NDVI در ماه شهریور سالهای 1382و 1387، نقشه های پهنه‌بندی شاخص های خشکسالی سنجش از دور VCI، VHI، TCI تهیه شده است. در ادامه برای بررسی عملکرد شاخص‌های خشکسالی کشاورزی مقادیر ضریب همبستگی برای نمایه‌های VCI، VHI و TCI با شاخص هواشناسی SPI محاسبه شد. نتایج نشان داد که نمایه سنجش از دور از دقت خوبی در برآورد پراکندگی مکانی و زمانی خشکسالی کشاورزی برخوردار است، به طوری که ضریب همبستگی بین نمایه VHI و SPI برابر 86/0 بدست آمد که نشان دهنده تطابق این شاخص با شاخص هواشناسی SPI می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of Agricultural Drought Monitoring Using Various Indices based on Ground-based and Remote Sensing Data (Case Study:Lake Urima Basin)

نویسندگان [English]

  • Naghem Navabi 1
  • Mahnoosh Moghaddasi 2
  • Naser Gangi 3

1 Water Resources-Aarak university

2 Water Engineering- Faculty of Agricultiral- Arak university- Arak -Iran

3 water resources-Arak Uiversity

چکیده [English]

Drought is a natural phenomenon that occurs in almost all parts of the world. The effects of this crawling phenomenon are more pronounced in arid and semi-arid areas due to their annual rainfall. In contrast to traditional methods based on meteorological stations observations that focus more on weather drought, the use of remote sensing and satellite imagery as a useful tool for monitoring agricultural drought has been considered. In the present study, the aim of comparing and assessing agricultural drought monitoring in Urmia Lake basin using VCI, VHI, TCI vegetation cover indices during the years 2000 to 2011 is using Madison. For this purpose, the NDVI index was first calculated from the images of Madis during June, July, August and September. Then, by comparing the mean of this index during these months, Shahrivar was selected with the maximum value as the month of the indicator. With regard to the minimum and maximum NDVI index in the months of September 2003 and 2008, VCI, VHI, TCI dash mapping maps were prepared. In order to evaluate the performance of agricultural drought indices, correlation coefficients were calculated for VCI, VHI and TCI profiles with SPI Meteorological Index. The results showed that the remote sensing index had a good accuracy in estimating the spatial and temporal dispersion of agricultural drought, so that the correlation coefficient between the VHI and SPI index was 0.86, which indicates that the index is consistent with the SPI meteorological index.

کلیدواژه‌ها [English]

  • "Agricultural drought"
  • "Remote Sensing"
  • "Standardized Precipitation Index"
  • "Vegetarian Index"
  1. Dabrowska-Zielinska, K., F. Kogan, A. Ciolkosz, M. Gruszczynska and W. Kowalik. 2002. Modelling of crop growth conditions and crop yield in Poland using AVHRR-based indices. International Journal of Remote Sensing, 23(6): 1109-1123.
  2. Damavandi, A.A., M. Rahimi, M.R. Yazdani and A.A. Noroozi. 2016. Spatial monitoring of agricultural drought through time series data of NDVI and LST indices and Modis data in Lake Urmia Catchment. Scientific Research Quarterly of Geographical Data (SEPEHR), 25(99): 25-48 (in Persian).
  3. Gidey, E., O. Dikinya, R. Sebego, E. Segosebe and A. Zenebe. 2018. Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environmental Systems Research, 7(1): 13-29.
  4. Heim, R.R. 2002. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8): 1149-1166.
  5. Kogan, F.N. 1997. Global drought watch from space. Bulletin of the American Meteorological Society, 78(4): 621-636.
  6. Kogan, F.N. 2005. NOAA/AVHRR satellite data based indices for monitoring agricultural droughts. New York, Oxford University Press, 88 pages.
  7. McKee, T.B., N.J. Doesken and J. Kleist. 1993. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22): 179-183.
  8. Orhan, O., S. Ekercin and F. Dadaser-Celik. 2014. Use of Landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin area, Turkey. The Scientific World Journal, 2014(1): 14-29.
  9. Son, N.T., C.F. Chen, C.R. Chen, L.Y. Chang and V.Q. Minh. 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417-427.
  10. Owrangi, M.A., J. Adamowski, M. Rahnemaei, A. Mohammadzadeh and R.A. Sharifan. 2011. Drought monitoring methodology based on AVHRR images and SPOT vegetation maps. Journal of Water Resource and Protection, 3(5): 325-346.
  11. Rostami, A., M. Bzane and M. Raini. 2016. Spatial and temporal monitoring of agricultural drought using Modis imagery and remote sensing technology. Journal of Soil and Water Science, 27: 213-226 (in Persian).
  12. Tonini, F., G.J. Lasinio and H.H. Hochmair. 2012. Mapping return levels of absolute NDVI variations for the assessment of drought risk in Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 18: 564-572.
  13. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150.
  14. Yıldırım, T. and Ş. Aşık. 2018. Index-based assessment of agricultural drought using remote sensing in the semi-arid region of Western Turkey. Journal of Agricultural Sciences, 24(4) : 510-516.
  15. Zhang, J. 2004. Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China. Agriculture, Ecosystems and Environment, 102(2): 133-153.
  16. Zhang, N., Y. Hong, Q. Qin and L. Liu. 2013. VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. International Journal of Remote Sensing, 34(13): 4585-4609.
  17. Zhang, X., M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C. Hodges, F. Gao and A. Huete. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3): 471-475.
  18. Zamanian, M.T., M.B. Behyar, A. Hosseini Karimi and M. Vazife Dust. 2016. Monitoring and analysis of drought using NOAA-AVHRR satellite sensing products 2012. Journal of Climatological Research, 9(3): 33-54.
  19. Zambrano, F., M. Lillo-Saavedra, K. Verbist and O. Lagos. 2016. Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution Vegetation Condition Index (VCI). Remote Sensing, 8(6): 530-549.