نوع مقاله : مقاله پژوهشی
نویسندگان
1 هیات علمی گروه مهندسی آب، دانشگاه لرستان
2 دانشجوی دکترای سازه های ابی
3 دانشجو
چکیده
شبیهسازی و ارزیابی آورد رسوب رودخانه از جمله مسائل مهم در مدیریت منابع آب میباشد. اندازهگیری مقدار رسوب به روشهای متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده، گاهی از دقت کافی نیز برخوردار نیست. در این پژوهش برای تخمین رسوبات رودخانه کشکان واقع در استان لرستان، از شبکه عصبی موجک استفاده شد و نتایج آن با روشهای مرسوم هوشمند همچون شبکه عصبی مصنوعی مقایسه شد. پارامتر دبی، دما، میزان مواد جامد محلول در آب و بارش بهعنوان ورودی و دبی رسوب بهعنوان خروجی مدل در مقیاس زمانی ماهانه طی دوره آماری (1393-1364) انتخاب شد. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا و ضریب نش ساتکلیف برای ارزیابی و نیز مقایسه عملکرد مدلها مورد استفاده قرار گرفت. نتایج حاصله نشان داد، ساختار ترکیبی توانسته با استفاده از دو روش هوشمند مورد بررسی، در تخمین میزان رسوب نتایج قابل قبولی ارائه کند. لیکن از لحاظ دقت، مدل شبکه عصبی موجک با بیشترین ضریب همبستگی (0.850)، کمترین ریشه میانگین مربعات خطا (t day-1 0.051) و نیز معیار نش ساتکلیف (0.758) در مرحله صحتسنجی در اولویت قرار گرفت. در مجموع نتایج نشان داد که مدل شبکه عصبی موجک توانایی بالایی در تخمین مقادیر کمینه و بیشینه برخوردار است.
کلیدواژهها
عنوان مقاله [English]
Application of wavelet neural network in estimating suspended sediments of rivers, case study: Kashkan-Lorestan River
نویسندگان [English]
- hassan torabipodeh 1
- ahmad godarzi 2
- reza dehghani 3
1 Associate Professor of Water Engineering
2 phd student
3 phd student
چکیده [English]
Simulation and evaluation of river sediment is one of the important issues in water resources management. Measuring the amount of sediment in conventional methods generally involves a lot of time and cost and sometimes does not have sufficient accuracy. In this study, a wavelet neural network was used to estimate the sediments of the Kashkan River in Lorestan Province, and its results were compared with conventional smart methods such as artificial neural network. Parameters of discharge, temperature, water soluble solids content and precipitation as input and sediment discharge were selected as output during the monthly statistical period (1984-2013). Correlation coefficient, root mean squared error, and Nash Sutcliff coefficient were used to evaluate and compare the performance of the models. Results showed that the combined structure has been able to provide acceptable results in estimating sediment yield using two intelligent methods. However, in terms of accuracy, the wavelet neural network model with the highest correlation coefficient (0.850), the lowest root mean square error (0.151 tonday-1), and the Nash-Sutcliff criterion (0.758) were prioritized in the validation stage. Results also showed that the wavelet neural network model has a high ability to estimate the minimum and maximum values.
کلیدواژهها [English]
- Artificial neural network
- Kashkan
- Sediment
- Water resources management
- Wavelet neural network