seid omid aleyasin; bahman shamsesfandabad; Hamid Toranjzar; abas ahmadi; Shahro Mokhtari
Abstract
Abstract: Wetlands are one of the most productive ecosystems in the world. They provide a unique and rich habitat for creature .they also perform a wide range of economic and service functions such as water conservation, runoff regulation, water quality treatment and recreational services. The aim of ...
Read More
Abstract: Wetlands are one of the most productive ecosystems in the world. They provide a unique and rich habitat for creature .they also perform a wide range of economic and service functions such as water conservation, runoff regulation, water quality treatment and recreational services. The aim of this study was to evaluate the ecosystem health of Meyghan Wetland of Arak based on different methods. To evaluate the Meyghan Wetland of Arak and also to evaluate the status of benthic organisms and other parameters, sampling of sediments of the wetland floor was performed. Sampling was performed at 10 points of the wetland and at 5 replications at each point. Several indicators were used to assess the health of Meyghan Wetland. Which included a biotic-index (BI) based on the work of Borja et al. (2000). In addition to the above, the main framework includes bio-indicators, heavy metal pollution index and water quality index, which have been considered in this study. The ecosystem health of Meyghan Wetland was evaluated based on the mentioned indicators and the map of ecosystem health of Meyghan Wetland was prepared. The results of this study showed that except for the nickel, zinc and lead as well as pH, for other elements (EC, Na, Cl, Mg, Ca, HCO3, SO4 and TDS), the lowest and highest values belong respectively To stations 3 and 6. The high amount of these elements in station 6 can be due to the activity of sodium sulfate factory in the northern part of the wetland, which causes changes in the wetland ecosystem by removing sediments from the wetland floor. In the case of copper, zinc and lead, the lowest concentration is seen in the northwestern part of the wetland and the highest concentration is seen in the western and southeastern parts of the wetland.
mohammad taghi heydari; Hosseinali Bahrami; , alireza aliyari
Abstract
Soil moisture is one of the fundamental parameters of the environment that is directly influenced by plant life, animal and activity of micro-organisms and plays a major role in energy exchanges between air and soil. Determination of the exact amount of soil moisture content in agricultural, hydrology ...
Read More
Soil moisture is one of the fundamental parameters of the environment that is directly influenced by plant life, animal and activity of micro-organisms and plays a major role in energy exchanges between air and soil. Determination of the exact amount of soil moisture content in agricultural, hydrology and geological sciences is very important. Therefore, the use of a method that can achieve soil moisture in normal and non-corrosion conditions with high speed and accuracy is very important and fundamental. The Ground Penetrating Radar (GPR) is a non-destructive method for the subsurface investigation that is evolving and seems to be able to greatly help agriculture to identify soil and protect culture systems. Different studies have been done in the field of soil moisture determination using GPR, but in Iran, there are limited studies on the ability of this method to estimate spatial changes of soil moisture content, therefore, this research has been done with these goals. The results indicate that in the study area, the distribution of humidity at each stage of harvest shows limited changes if the time changes of humidity in the time interval between winter and spring are about 10-15% of the difference. Also, the mean square of GPR method error compared with TDR 13.2 method is also compared to the GPR and weighted 81.3 method and the correlation coefficient in these two comparisons is equal to 0.87 and 0.95, which indicates the high accuracy of the GPR method for estimating soil moisture.
mehri raoofi; Mahmoud Habibnejad Roshan; Kaka Shahedi; Fatemeh Kardel
Abstract
Rivers are the main arteries of watersheds that play an important role in providing water for agriculture, drinking and industry. On the other hand, the reduction of river water quality has been one of the biggest human concerns in the last century. In order to evaluate the quality of running water, ...
Read More
Rivers are the main arteries of watersheds that play an important role in providing water for agriculture, drinking and industry. On the other hand, the reduction of river water quality has been one of the biggest human concerns in the last century. In order to evaluate the quality of running water, biological indicators and the study of benthic invertebrates can be used. The aim of this study was to investigate the water quality of the main rivers of Babolrood watershed using the Hilsenhof Biological Index (HFBI). For this purpose, sampling of benthic invertebrates in 5 main river stations was performed using a net frame (sorber) with a cover area of 40 cm2 and transferred to the laboratory for identification. Then, using Pennak (1953) and Mellenby (1963) identification keys, the samples were identified by family and sex and counted and weighed. Also, at the same time as sampling of benthic organisms to study the physicochemical properties of water, samples were taken from river water. Pearson correlation coefficient was used to investigate the relationship between biological samples and physicochemical properties of water. The results showed that Babolk station with the lowest FBI and Babolrood-Babol station with the highest FBI were in the category of non-organic pollution and some organic pollution, respectively. The results of correlation of biological samples with physicochemical parameters in most cases were not significant at 95% confidence level. The highest correlation coefficient between Oligochaeta species was with Diversity biodiversity.Keywords: Benthic invertebrates, water quality, HFBI, Babolrood watershed, Mazandaran province
jamal mosaffaie; Ataollah Ebrahimi; Mahmood Arabkhedri; Parviz Garshasbi; Amin Salehpour Jam; Mahmoudreza Tabatabaei; Hamidreza Peyrowan; Mohammadreza Gharibreza; Mehran Zand; Bagher Ghermez Cheshme
Abstract
For the effective management of watersheds, it is necessary to conduct appropriate and practical research, which in turn requires solving the problems related to this area. This article intends to have an analysis of their problems in the field of soil conservation and watershed management based on common ...
Read More
For the effective management of watersheds, it is necessary to conduct appropriate and practical research, which in turn requires solving the problems related to this area. This article intends to have an analysis of their problems in the field of soil conservation and watershed management based on common thinking with the research and education centers of agriculture and natural resources of the country. For this purpose, these problems were collected based on the request of the SCWMRI from the provincial branches. Then, the announcements were categorized in two organizational and thematic ways (general and partial). The results indicate that in this survey, 25 centers out of 32 provincial centers (78% participation) have announced 182 cases as problems in the research department in the field of soil conservation and watershed management. Thematic classification of the announced cases showed that the subjects of knowledge-based productivity of watershed resources, watershed monitoring and evaluation, and solving the gap in the research department with implementation have the most importance with 28, 26, and 25 cases (15%, 14%, and 13%), respectively. The results of organizational classification also indicate that the departments of the directorate and research departments of watershed management and also hydrology and water resources development have the most importance with 34, 28, and 24 cases (19%, 15%, and 14%), respectively. Based on the results of this research, the managers and decision-makers of the research and implementation departments of soil and watershed protection in the country will be able to have better targeting for their future policies, strategies and actions.
sahel haghighi; ZeinabY Jafarian; Mohamad Azadbakht; forood sharifi; Reza Tamartash
Abstract
According to the morphological and physiological characteristics of vetiver roots, it can be usedas the most suitable protective wall on the steep and side slopes. For this purpose, this study was carried out on the side slopes of Sangar Dam reservoir in Siahkol city in Gilan province. In this resesrch, ...
Read More
According to the morphological and physiological characteristics of vetiver roots, it can be usedas the most suitable protective wall on the steep and side slopes. For this purpose, this study was carried out on the side slopes of Sangar Dam reservoir in Siahkol city in Gilan province. In this resesrch, soil and Vetiver plant roots were sampled from the depth of 0-50 cm of soil with different degrees of slope of the first surface (30-40 degrees), the second level (40-50 degrees), the third level 60-70 degrees) and four repetitions were done. The results of the research showed that with the increase in the slope, the amount of organic carbon, silt, soil clay, root weigh, Vetiver root extract weight increases. But with the increase in slope, some soil properties such as acidity, salinity, sand, humidity and lime decreases. As a result, there is a significant correlation (p≤0.05) between the soil properties and the amount of root weight and the weight of Vetiver root extract in the slope of the study area.
Hasan Nikkhou; Amin Salehpour Jam; Zahra Gerami
Abstract
Today, the natural resources of the country face serious problems and threats such as water scarcity, drought, climate change, water pollution, soil and air pollution, desertification, soil erosion, and issues arising from unsustainable and inappropriate land use practices such as deforestation, destruction ...
Read More
Today, the natural resources of the country face serious problems and threats such as water scarcity, drought, climate change, water pollution, soil and air pollution, desertification, soil erosion, and issues arising from unsustainable and inappropriate land use practices such as deforestation, destruction of rangelands, overgrazing, and unsustainable agriculture. This underscores the urgent need for a more serious focus on the issue of research and sustainable development in the management of the country's natural resources and environment to provide solutions to problems and improve the health and sustainability of the country's ecosystems. Despite the abundance of research articles in the field of watershed management with an emphasis on its technical and managerial aspects published in domestic and international journals, the categorization and thematic analysis of scientific research articles published in domestic journals have received less attention. In this regard, this study aims to investigate the thematic analysis and classification of various types of articles published in the Watershed Engineering and Management Journal, as well as to examine the thematic trends of each category over three five-year periods (from 2009 to 2013 (Volume 1 to 5), 2014 to 2018 (Volume 6 to 10), and 2019 to 2023 (Volume 11 to 15)). Furthermore, this study seeks to examine the frequency of keywords presented in articles published during the aforementioned periods. Additionally, this study examines the perspectives of the faculty members and research experts of the five research groups of the Soil and Watershed Conservation Research Institute regarding submitting articles to the "Watershed Engineering and Management" journal, as well as the quality, characteristics, challenges, and functions of articles published in this journal during the period from 2009 to the end of 2023 (Volume 15, Issue 4).
Reza Bayat; majid zanjanijam; Majid Soufi
Abstract
Soil erosion causes soil degradation and reduction of its fertility potential. Gully erosion is one of the accelerated phenomena caused by human developmen programs and one of the important factors of soil degradation, which causes soil lost and sediment production in different climates of Iran. Physical ...
Read More
Soil erosion causes soil degradation and reduction of its fertility potential. Gully erosion is one of the accelerated phenomena caused by human developmen programs and one of the important factors of soil degradation, which causes soil lost and sediment production in different climates of Iran. Physical condition of each region, morphometric characters of each gully, soil, land use, causes of gully erosion and economic damages were recorded. Based on the information obtained, the prioritization of watershed areas for the implementation of watershed management and soil protection operations based on the proposed method of prioritizing indicators of area, length, width to depth, total damage and damage per surface unit according to a score between 0 for no priority and 9 was given the highest priority. First, the value of each factor was divided by the average value of the factor in the province and in ascending order, a score of 0 for the lowest value of the index and a score of 9 for the highest value was assigned to the region, and the priority of the regions was determined separately based on the scores of each index. Then, the total score of the indicators' priorities was calculated, in ascending order, and the highest score was determined as the first priority and the lowest score was determined as the last priority.Soil of gullies has heavy to semi-heavy texture and land use is natural rangeland mostly. Causes of gully erosion are destruction of rangeland vegetation cover and soil erodibility. Economic damage to rangeland due to gully development was more than 3984 million rials. Result of priority control indexes review showed that Aftab Dar, Durchak and QostynRud Regions have high priority of erosion control and Yala-Bad, Dastjerdeh and MoallmeKelayeh areas have lower priority.
Morteza Miri; Mehran Zand; Mohammadreza Kousari; Mojtaba Rahimi
Abstract
The purpose of this research is to investigate the spatial-temporal variations of extreme temperature events in Iran. The data used in this study includes the daily average maximum and minimum temperatures from 123 synoptic stations during the observational period from 1988 to 2017. Additionally, it ...
Read More
The purpose of this research is to investigate the spatial-temporal variations of extreme temperature events in Iran. The data used in this study includes the daily average maximum and minimum temperatures from 123 synoptic stations during the observational period from 1988 to 2017. Additionally, it incorporates data from the CNRM-CM6-1 model for 2020 to 2060 under two scenarios: optimistic (SSP126) and pessimistic (SSP585). Calculating extreme warm temperature indices from 1988 to 1977 showed that, in general, for most stations, the frequency and trend of warm indices such as warm nights, warm days, the number of summer days, and the number of tropical nights has been increasing. The analysis of temporal changes in cold index events revealed that, overall, the trend for cold indices such as cold days, cold nights, and the number of frost days has been decreasing for most stations. An analysis of the frequency of the SU25 index event as one of the most common extreme warm indices showed that the highest occurrence of this index was 363 days for the Konarak (airport) station, while the lowest occurrence was 21 days for the Ardabil station. The maximum number of frost days (FD) is 179 days for the Sarab station, while the minimum occurrence is no frost days for some of the southwestern stations in the country. Based on the outputs of the CNRM-CM6-1 model for the ssp126 and ssp585 scenarios during the period 2060-2020, it has been determined that the trend of warm extremes in regions with higher elevations and latitudes does not differ significantly compared to regions with lower elevations and latitudes. Based on the findings from this study and similar research, it can be stated that Iran’s warm temperature extremes have increased over past and future periods, while extreme cold events in Iran are decreasing.
Omid Rahmati; Seyed Masoud Soleimanpour; Bagher Ghermez Cheshme
Abstract
Extended AbstractIntroduction:Floods cause financial losses and many casualties in Iran every year and have harmful effects on the sustainable development of the watershed. The purpose of this research is to develop a scientific framework for evaluating the flood vulnerability situation in Zarineh watershed.Materials ...
Read More
Extended AbstractIntroduction:Floods cause financial losses and many casualties in Iran every year and have harmful effects on the sustainable development of the watershed. The purpose of this research is to develop a scientific framework for evaluating the flood vulnerability situation in Zarineh watershed.Materials and methods:In this research, various components including social, economic, organizational and infrastructural were considered to formulate the framework for assessing the watershed vulnerability to floods. Then, the total vulnerability index was calculated for each village and after its standardization at the scale of Zarineh watershed, it was classified into five different groups: very low, low, medium, high and very high. Finally, the vulnerability index map of the entire Zarineh watershed was produced.Results and discussion:Based on the total vulnerability index map, it can be stated that Chehlcheshmeh, Golchidar, and Obatu districts were the most vulnerable, and Boyen, Namashir, and Zolfaghar districts had the lowest total vulnerability index.Conclusions:Based on the findings of this research, the framework based on social, economic, organizational, and infrastructural conditions has made it possible to prepare a flood vulnerability map of the watershed. The variables considered in the calculation of the total vulnerability index are selected in such a way that they cover different aspects and their information can be collected. The vulnerability map of Zarineh watershed has provided useful information for decision makers and managers in flood management. Improving the condition of different parts of the Zarineh watershed requires detailed planning of the executive bodies in accordance with their social, economic, organizational, and infrastructural conditions.
yahya parvizi; Zahra Gerami
Abstract
Estimates made in the country indicate the annual waste of about one billion cubic meters of soil from the country's land resources. Although the economic valuation of this volume of soil resource loss is difficult, but considering the fragile balance of ecosystems in the country's land resources, it ...
Read More
Estimates made in the country indicate the annual waste of about one billion cubic meters of soil from the country's land resources. Although the economic valuation of this volume of soil resource loss is difficult, but considering the fragile balance of ecosystems in the country's land resources, it is possible to predict what irreparable and irreversible loss this volume of resource loss will bring to the production capacity and operation of these resources. shows Part of this soil loss is compensated and replaced by soil formation processes, and as long as the rate of erosion does not exceed the rate of soil formation, it is considered a kind of natural and inevitable process. Knowing the rate of natural replacement is necessary to monitor the changes in the quality and quantity of this natural resource and to know the process of its deterioration or recovery. On the other hand, every year, large amounts of the country's financial resources are spent on watershed management measures. Meanwhile, there is no quantitative regional standard for the design of these measures, as well as a practical guideline for evaluating the effectiveness of these measures. This standard, as well as the quantity of soil regeneration and renewability, is known in the world as tolerable soil erosion. In this article, a summary of the formation of this concept in soil science, factors affecting the value of T, as well as its calculation methods are introduced and evaluated. Also, a summary of research has been done and their results related to tolerable erosion and familiarization with different methods in this field, suggestions and research needs and optimal solutions for estimating tolerable erosion for the conditions of the country have been introduced.
Seyed Ahmad Hosseini; Ahmad Tabatabaei
Abstract
AbstractCorrect estimation of the suspended sediment content of rivers plays an important role in studies of erosion and sediment, hydrology, and watershed management. Simulation of suspended sediment in hydrological systems with a high degree of uncertainty and yet, our understanding of the components ...
Read More
AbstractCorrect estimation of the suspended sediment content of rivers plays an important role in studies of erosion and sediment, hydrology, and watershed management. Simulation of suspended sediment in hydrological systems with a high degree of uncertainty and yet, our understanding of the components and processes within them is faced with uncertainties, causing many applications of intelligent models, including artificial neural networks. However, the use of these intelligent models is also facing challenges. Determining the appropriate network structure requires optimizing the parameters used (such as the optimal number of neurons and layers, weight and bias, and the type of activation functions) so that their proper calibration by trial and error, while low efficiency, results in time-consuming. In the present study, in order to simulate the daily suspended sediment load in selected watersheds of Ardabil province, including the Sarab Gharasu watershed (Ghorchai and Hirchai Rivers), a multilayer perceptron artificial neural network was used. A particle swarm optimization (PSO) algorithm was used to train the neural network model, in addition to the conventional error propagation method, and to optimize the weight and bias values of neural network model neurons. Also, the self-organizing map clustering method was used to increase the generalization power of the models. The results of the present study showed that training of neural network models with the PSO algorithm in all selected rivers was more efficient than neural network models which use only the error propagation method. Since evolutionary algorithms (such as PSO algorithm) can provide suitable solutions for the optimization of neural network parameters, their application in training neural network models can be a good solution to improve the efficiency of smart models in simulating suspended sediment of rivers and using its results in the progress of watershed structures and water resources operations.
Pouya Allahverdipour; Yaghob Dinpashoh
Abstract
A significant portion of precipitation in the hydrologic cycle is converted into runoff due to the characteristics of watersheds. Considering the problem that the Lake Urmia Basin is going to be shirinkage, it is important to identify the water resources of this basin and its sub-basins.Ajichai basin, ...
Read More
A significant portion of precipitation in the hydrologic cycle is converted into runoff due to the characteristics of watersheds. Considering the problem that the Lake Urmia Basin is going to be shirinkage, it is important to identify the water resources of this basin and its sub-basins.Ajichai basin, is one of the sub-basins of Lake Urmia. In this study, rainfall data of Tabriz synoptic station and runoff data of Nahand hydrometric station is used. The aim of this research is to model the daily rainfall-runoff of the Ajichai basin using intelligent machine learning models including the Artificial Neural Network (ANN), Support Vector Machine (SVM), Gene Expression Programming (GEP) and Random Forest (RF). 70% of the data was used for training and 30% of the data was used for testing the models. Statistical measures of Coefficient of determination (R2), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Wilmot Index (WI) were used to evaluate the performance of the models.The results of this research showed that all the models had a very good performance in simulating the rainfall-runoff in the Ajichai basin. According to the obtained results, the GEP model with R2=0.84, RMSE=0.024m3.s-1, NSE=0.864 and WI=0.968 is the most accurate one in modeling rainfall-runoff of Ajichai basin. Based on the scatter plots and time series, the GEP model was more accurate than other models in modeling the rainfall-runoff values of this basin with high correlation.According to the results, all the investigated models had good capabilities in modeling the daily rainfall-runoff in the Ajichai basin. The results of this research show the very reasonable performance of machine learning models in rainfall-runoff modeling. In general, due to the high accuracy of intelligent models, especially the GEP model in predicting daily rainfall-runoff, it is recommended to use these methods in hydrological problems.
Maryam Sadat Jaafarzadeh; Ebrahim Karimi Sangchini
Abstract
Watershed management measures are carried out to maintain or restore the ecosystem function of watersheds by reducing the effects of events such as floods, landslides, erosion, etc. downstream and increasing the productivity of existing resources and improving local livelihoods. These measures become ...
Read More
Watershed management measures are carried out to maintain or restore the ecosystem function of watersheds by reducing the effects of events such as floods, landslides, erosion, etc. downstream and increasing the productivity of existing resources and improving local livelihoods. These measures become effective when they identify and restore or strengthen areas of high ecological value that must be protected from destruction or conversion to other uses. In this study, the effectiveness of some of the latest watershed management plans implemented in different watersheds in Iran (the effectiveness of watershed measures in Behshahr-Galoogah watershed, Maragheh watershed - Markazi province, Khaveh-Delijan watershed, Asiaborud watershed in Chalus city and Faryab-Golashgerd watershed- Kerman province) and the state of the water resources were discussed according to the latest available documents. Each of these projects and the positive and negative results were considered. The results of the implementation of watershed measures in Behshahr-Galoogah watershed indicated that in the sub-basins where the measures were constructed as a combination of different structures compared to the streams regime, it was effective in reducing the peak discharge of runoff and increasing the concentration time. In sub-basins with few check dams, according to sub-basins area and the long length of the streams, these check dams did not cause a significant reduction in streams length, changing the concentration time and peak discharge of runoff, but stabilized streams longitudinal profile. Based on the findings of the effectiveness of watershed measures in Maragheh watershed-Markazi Province, specific erosion and specific sediment, before and after the implementation of watershed measures were evaluated 10.78 and 3.14 (Ton/km2), 3.1 and 66. 9 (Ton/km2) respectively. Also, the ratio of profit and cost evaluated 0.9, which is multiplied during the years of implementation so, it is higher than one, which indicates the economic efficiency of the project.
Fatemeh Vatanparast Ghaleh Juq; Bromand Salahi
Abstract
The severity and frequency of droughts become more complicated with the occurrence of climate change and is an important issue in the agriculture and water resources sector. The current research was conducted to predict drought in Ardabil, Ahar, Parsabad, Jolfa, Khoi, and Mako stations located in the ...
Read More
The severity and frequency of droughts become more complicated with the occurrence of climate change and is an important issue in the agriculture and water resources sector. The current research was conducted to predict drought in Ardabil, Ahar, Parsabad, Jolfa, Khoi, and Mako stations located in the Aras basin. For this purpose, the output of the CMIP6 general circulation model was predicted under the scenarios (SSP1-2.6), (SSP2-4.5), and (SSP5-8.5) for the precipitation data of 2024-2043. Then, using the Standardized Precipitation Index (SPI), drought characteristics on an annual scale during the base period (1985-2014) were measured with the future period. Validation of the model was done using R2, RMSE, MAE, MSE, and NSE indices. The results of the analysis of statistical indicators showed that the CanESM5 model has an acceptable ability to simulate precipitation. The forecasting results based on the CanESM5 model for the coming years showed that the severity of drought under all three scenarios will increase compared to the base period, which is caused by the consequences of climate change in the studied area. Also, the output of drought monitoring based on the SPI index showed that in the pessimistic scenario of SSP5-8.5, the number and intensity of droughts are more than the average and optimistic scenarios. The values of the SPI index for 2000-2020 in terms of drought-free areas obtained from TCI and VCI indices extracted from satellite images in the Google Earth Engine system showed that in all stations there is the highest correlation coefficient between the SPI and VCI index, which indicates the ability of the index VCI is to show the drought situation in Aras watershed.
Mahjabin Radaei; Esmaeil Salehi
Abstract
In the transition from an introverted traditional society to an extroverted modern one, many places cannot remain resilient and sustainable against the tensions of modernity and the conflicts of dominant culture. The effort to create reliable, safe, economic, and resilient infrastructure in the face ...
Read More
In the transition from an introverted traditional society to an extroverted modern one, many places cannot remain resilient and sustainable against the tensions of modernity and the conflicts of dominant culture. The effort to create reliable, safe, economic, and resilient infrastructure in the face of climatic hazards is an undeniable principle of the present era. Ancient hydraulic structures represent a legacy containing successful management solutions for sustainability and resilience against harsh ecological conditions. Therefore, deriving insights from ancient thought on the human-nature relationship and nature-based solutions can enhance the resilience of contemporary cities in confronting natural and human crises. This study offers a descriptive-analytical examination aimed at analyzing the drainage system pattern of Tuancheng in ancient China to achieve urban flood resilience. Based on a deductive-comparative method, the structural-functional principles governing the Tuancheng drainage system, as an ancient flood management experience, were compared with modern practices at multiple scales, leading to the development of an applicable pattern for resilience against flooding and water resource management. The results indicate that the manifestation of ecological wisdom principles through various policies and strategies, such as conservative plans, enhancing permeability, runoff storage, runoff transfer, water filtration, and landscaping at multiple structural-functional scales, can provide a fundamental pattern for achieving sponge cities that are resilient to floods. This represents an idea rooted in environmental civilization capable of mitigating of urban development on natural ecosystems, combining green-blue and gray infrastructures that aim to solve water crises in contemporary cities.
Alireza Majidi
Abstract
The protection and enhancement of water resources, as well as the collection and storage of water with minimal losses, are among the effective measures in areas with arid and semi-arid climates. Groundwater dam technology is recommended as a suitable solution for the management and development of water ...
Read More
The protection and enhancement of water resources, as well as the collection and storage of water with minimal losses, are among the effective measures in areas with arid and semi-arid climates. Groundwater dam technology is recommended as a suitable solution for the management and development of water resources in these climates. This paper explores the feasibility of constructing a groundwater dam in the sub-basins of western Semnan Province using hierarchical analysis and geographic information systems (GIS). Based on the nature, performance, and objectives of groundwater dams, and through a review of the literature, the necessary conditions, characteristics, and criteria for selecting suitable locations for constructing these types of underground hydraulic structures were identified. To identify areas with the potential for groundwater dam construction, criteria and characteristics related to geology, hydrology, water resources, topography, and geometry were utilized. Initially, some areas were eliminated by absolute criteria or classified as unsuitable in the decision-making criteria. Using absolute criteria such as fault zones (100 to 200 meters), water source buffers (500 meters), stream rank (1 and 2), slope percentage (over 8%), and the lithology of geological formations (alluvial and gypsum and saline layers) as exclusion criteria, areas were hierarchically and stepwise eliminated using Boolean logic within the GIS framework. After weighting, all decision-making and selection criteria were classified and internally scored based on their impact on creating favorable conditions for the desired structure, and prepared as an information layer in raster format with a pixel size of 25 meters in the GIS environment. Following the elimination of unsuitable areas through exclusion criteria, prioritized suitable regions were identified by overlaying the layers related to the classified criteria and summing the scores in each area. Results showed that over 20% drainage of the surface area of the western Semnan Province has the potential for the
Elaheh Foroudi Sefat; Soudabeh Golestani Kermani; Marzieh Samare Hashemi; Mohammad Zounemat-Kermani
Abstract
Materials and methods:In the present review research, articles and reports related to flood and drought phenomena in Kerman Province (located in Iran) have been collected and studied, and in this regard, 49 practical articles in Persian (2004‒2024) and 9 articles in English (2012‒2023) were analyzed. ...
Read More
Materials and methods:In the present review research, articles and reports related to flood and drought phenomena in Kerman Province (located in Iran) have been collected and studied, and in this regard, 49 practical articles in Persian (2004‒2024) and 9 articles in English (2012‒2023) were analyzed. In a general classification, Kerman province was divided into four regions based on the average latitude and longitude; respectively, the northwest and southeast regions accounted for 35% and 34% of the citations and accounted for the largest amount of studies, and 73% of the sources of this research are related to studies of drought in the province, which shows the age of this phenomenon. In this research, 27% of the reviewed studies used questionnaires, and the most commonly used statistical software and analytical software were statistical-based (26%) (e.g., SPSS software) and GIS-based software (24%), respectively.Results and discussion:Flood and drought phenomena in Kerman Province have been increasing in intensity and frequency in recent years compared to the past, and their impact on societies cannot be denied. Conclusions:The summary of the obtained results shows that the biggest threat to Kerman Province is the drought phenomenon, that the whole province suffers from drought and its effects, and according to the results, the slope of the drought trend line of the Standardised Precipitation-Evapotranspiration Index (SPEI), during the statistical period of 1990‒1996 was equal to +0.046, which indicates a decrease in drought in the province, and in the statistical periods of 1997‒2010 and 2011‒2018, respectively, it was equal to -0.031 and -0.01, which indicates an increase in the severity of drought in recent years. Also, the occurrence of floods is increasing, and this phenomenon has caused the most damage in the northwest-southeast belt of the province and in the high areas.
zobeideh bidaki
Abstract
Nowadays, the importance of water and soil resource management and environmental conservation has become one of the main concerns in developmental planning. Watershed management, as a comprehensive approach for the sustainable management and utilization of water and soil resources, plays a crucial role ...
Read More
Nowadays, the importance of water and soil resource management and environmental conservation has become one of the main concerns in developmental planning. Watershed management, as a comprehensive approach for the sustainable management and utilization of water and soil resources, plays a crucial role in improving the environmental, economic, and social conditions of various regions. The Baghamch watershed in Chenaran County, with its unique geographical and climatic characteristics, has become one of the key areas for implementing watershed management projects. This area, with its valuable natural resources, particularly surface and groundwater, is highly impacted by climate change and human activities. Therefore, the improvement and preservation of these resources through effective watershed management measures not only contribute to environmental conservation but also have significant effects on enhancing the economic and social conditions of local communities. Watershed management can help improve rural livelihoods and strengthen the local economy by mitigating the negative effects of floods and droughts, improving soil and water quality, and creating new job opportunities. In this regard, understanding and evaluating these impacts in the Baghamch watershed can serve as a model for similar regions and provide valuable information to policymakers and natural resource managers. This article examines the effects of watershed management on the improvement of the economic and social conditions of local communities in the Baghamch watershed and aims to contribute to a clearer understanding of the benefits and challenges of this approach in sustainable development through data analysis and the outcomes of watershed management projects. It is hoped that the results of this study will help enhance management processes and improve the quality of life in local communities.
Maryam Sabouri; Haydeh Ara; Mohammad Kia Kianian; Amin Salehpour Jam
Abstract
Over the past decades, excessive and unprincipled exploitation of watershed resources (soil, water, and vegetation) has reduced their health. The purpose of the present study is to evaluate the tourism value of geomorphotourist landscapes (case study: Hablehroud basin) using the Prolong model. Among ...
Read More
Over the past decades, excessive and unprincipled exploitation of watershed resources (soil, water, and vegetation) has reduced their health. The purpose of the present study is to evaluate the tourism value of geomorphotourist landscapes (case study: Hablehroud basin) using the Prolong model. Among the geomorphic sites in the Hablehroud region, 3 sites were selected and an identity card was prepared for each of the geomorphic sites. In this study, based on the Prolong model, a survey was conducted of a number of experts knowledgeable about the study area and visiting tourists (30 people) using a simple random sampling method. In this model, the tourism value of a place was measured by the average of aesthetic, scientific, cultural and economic values. After measuring the data, it was determined that among the three selected samples, the Vashi Gorge geosite with a tourism value of 0.54 and an average productivity value of 0.68 has the highest geomorphological tourism value. What has increased the value and importance of the Vashi Gorge is its uniqueness in the country, favorable and cool climate, geomorphological shapes and unique carvings on the rock wall of the gorge, as well as the waterfall view and the presence of a very beautiful meadow around this gorge. The Rudafshan Cave geosite with a tourism value of (0.41) was ranked second. The Khumdeh mineral spring with a hardness of (0.31) took third place. The assessments indicate that the tourism values of the geomorphological landforms of the Tangeh Vashi region are mainly due to the high value of the external beauty, cultural value, and scientific value of this landform. Factors such as difficulty of access, lack of appropriate welfare and service facilities, and lack of attention to geotourism have been effective in reducing the total calculated hardness.
Seyed Hamidreza Sadeghi; Roghayeh Alipour; Hasan Fereydoni; Fatemeh Zahra Enayati; Reza Yaghooti; Mitra Moradnezhad; Fatemeh Esmailzadeh Ashini; Fatemeh Abdolbaghi; Sahar Mousavian; Reza Chamani; Marjan Bahlekeh; Hamed Beigi
Abstract
To prevent further land degradation, effective policies and strategies are imperative. This study reviews detailed executive studies of the Daftabad Watershed in South Khorasan Province, Iran, to identify its problems. Field visits and a fishbone diagram were used to create a list of regional problems ...
Read More
To prevent further land degradation, effective policies and strategies are imperative. This study reviews detailed executive studies of the Daftabad Watershed in South Khorasan Province, Iran, to identify its problems. Field visits and a fishbone diagram were used to create a list of regional problems and challenges. The study evaluated six pillars of comprehensive watershed management, viz., legal, policy, economic, social, cultural, and knowledge. The assessment shows that the current approaches to managing the Daftabad Watershed face significant challenges, including inappropriate management patterns, climate change, lack of local community participation, investment deficiencies, and socio-economic issues. These factors have left the watershed highly vulnerable. Additionally, the lack of consideration for the diverse needs of the population, particularly women, has led to inadequate population management solutions. Utilizing the economic capabilities of the Daftabad Watershed, such as agriculture and barberry cultivation, to produce and market products and expand ecotourism, can reduce poverty and strengthen local economies. Comprehensive and systematic management can improve the current trend of watersheds, reduce the waste of water and soil resources, curb migration to larger cities, and mitigate environmental problems. Active participation of all stakeholders—government, private sector, NGOs, and local communities—is crucial in the design and implementation of this program. Emphasizing community participation, effective policy-making, investment in infrastructure, support for vulnerable groups, and integrating Indigenous and scientific knowledge can significantly contribute to its success.This study underscores the need for a comprehensive and participatory approach, providing solutions for improving Daftabad Watershed management. The results can serve as a model for managers and policymakers, emphasizing holistic and inclusive strategies for sustainable development and resilience. It is recommended that managers and planners prioritize evaluating, monitoring, and measuring the effects of implemented projects to preserve and restore healthy watersheds and prevent migration and associated problems in neighboring cities.