Abuzir, S. Y., Abuzir, Y. S., 2022. Machine learning for water quality classification. Water Qual. Res. J., 57(3), 152-164.
Ahmed, U., Mumtaz, R., Anwar, H., Shah, A. A., Irfan, R., García-Nieto, J., 2019. Efficient water quality prediction using supervised machine learning. Water, 11(11), 2210.
Al-Adhaileh, M. H., Aldhyani, T. H., Alsaade, F. W., Al-Yaari, M., Albaggar, A. K. A., 2022. Groundwater quality: The application of artificial intelligence. J. Environ. Public Health, 2022(1), 8425798.
Arabgol, R., Sartaj, M., Asghari, K., 2016. Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. ENVIRON MODEL ASSESS, 21, 71-82.
Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S., Gori, F., Petitta, M., 2023. Climate change and its effect on groundwater quality. J. Environ. Public Health, 45(4), 1133-1144.
Beiranvand, N., Sepahvand, A., Haghizadeh, A., 2023. Total Dissolved Solids modeling using machine learning algorithms in periods of low and high water (Case study: Khorammabad, Biranshahr and Alashtar watersheds, Lorestan province). JRWM, 76(3), 215-236. (in persian)
Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., Kazakis, N., 2020. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci. Total Environ., 721, 137612.
Cojbasic, S., Dmitrasinovic, S., Kostic, M., Turk Sekulic, M., Radonic, J., Dodig, A., Stojkovic, M., 2023. Application of machine learning in river water quality management: A review. Water Sci. Technol., 88(9), 2297-2308.
Dezfooli, D., Hosseini-Moghari, S. M., Ebrahimi, K., Araghinejad, S., 2018. Classification of water quality status based on minimum quality parameters: application of machine learning techniques. Model. Earth Syst. Environ., 4, 311-324.
Delbaz, R., Ebrahimian, H., 2024. A Review of the Application of Data Science and Machine Learning in Agricultural Water Management. Journal of Water and Sustainable Development, 11(2), 39-56. doi: 10.22067/jwsd.v11i2.2402.1310 (in persian).
Dritsas, E., Trigka, M., 2023. Efficient data-driven machine learning models for water quality prediction. Computation J. (MDPI), 11(2), 16.
El-Rawy, M., Batelaan, O., Alshehri, F., Almadani, S., Ahmed, M. S., Elbeltagi, A., 2023. An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia. Water, 15(13), 2448.
Eze, E., Kirby, S., Attridge, J., Ajmal, T., 2023. Aquaculture 4.0: hybrid neural network multivariate water quality parameters forecasting model. Sci. Rep., 13(1), 16129.
Farhadinejad, T. , vayskarami, I., Zand, M., 2024. Investigating the relationship between river flow changes caused by drought and the quality of surface water resources in the Tirah River Basin. Watershed Engin. Manage., 16(1), 64-81. doi: 10.22092/ijwmse.2023.361325.2009.(in persian)
Farid Giglou, B. , Ghazavi, R., Dokhani, S., 2022. Evaluating the impact of climate change on Aras border river water quality using statistical methods, SWAT Model and WQISC Index. Watershed Engin. Manage., 13(4), 718-731. doi: 10.22092/ijwmse.2021.351242.1822.(in persian)
Fernández del Castillo, A., Yebra-Montes, C., Verduzco Garibay, M., de Anda, J., Garcia-Gonzalez, A., Gradilla-Hernández, M. S., 2022. Simple prediction of an ecosystem-specific water quality index and the water quality classification of a highly polluted river through supervised machine learning. Water, 14(8), 1235.
Ghaemi, A. , Azhdary Moghaddam, M., Keikha, S., 2024. Evaluation of integrated artificial intelligence models in estimating total dissolved solid concentrations in the upstream of Sari city. Watershed Engin. Manage., 16(1), 50-63. doi: 10.22092/ijwmse.2023.358863.1975.(in persian)
Goodarzi, M. R., Niknam, A. R. R., Barzkar, A., Niazkar, M., Zare Mehrjerdi, Y., Abedi, M. J., Heydari Pour, M., 2023. Water quality index estimations using machine learning algorithms: a case study of Yazd-Ardakan Plain, Iran. Water, 15(10), 1876.
Granata, F., Papirio, S., Esposito, G., Gargano, R., De Marinis, G., 2017. Machine learning algorithms for the forecasting of wastewater quality indicators. Water, 9(2), 105.
Hasheminasab, S., Rahimi, D., Zakerinejad, R., Kropáček, J., 2022. Assessment of climate change impact on surface water: a case study—Karoun River Basin, Iran. Arab. J. Geosci., 15(9), 904.
Haghiabi, A. H., Nasrolahi, A. H., Parsaie, A., 2018. Water quality prediction using machine learning methods. Water Qual. Res. J., 53(1), 3-13.
Hamada, M. S., Zaqoot, H. A., & Sethar, W. A. (2024). Using a supervised machine learning approach to predict water quality at the Gaza wastewater treatment plant. Environ. Sci.: Adv., 3(1), 132-144.
Hussein, E. A., Thron, C., Ghaziasgar, M., Bagula, A., Vaccari, M., 2020. Groundwater prediction using machine-learning tools. Algorithms, 13(11), 300.
Kaur, I., Gulati, A., Lamba, P.S., Jain, A., Taneja, H. and Syal, J.S., 2024. Water Quality Assessment using Machine Learning: A Focus on Coliform Prediction in Water. Asian J. Water Environ. Pollut., 21(5), pp.19-26.
Khan, M. S. I., Islam, N., Uddin, J., Islam, S., Nasir, M. K., 2022. Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J. King Saud Univ. - Comput. Inf. Sci., 34(8), 4773-4781.
Khan, Y., See, C. S., 2016. Predicting and analyzing water quality using machine learning: a comprehensive model. In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (pp. 1-6). IEEE.
Khullar, S., Singh, N., 2021. Machine learning techniques in river water quality modelling: a research travelogue. Water Supply, 21(1), 1-13.
Kouadri, S., Elbeltagi, A., Islam, A. R. M. T., Kateb, S., 2021. Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Appl. Water Sci., 11(12), 190.
Lakshmi, T. M., Martin, A., Begum, R. M., Venkatesan, V. P., 2013. An analysis on performance of decision tree algorithms using student’s qualitative data. Int. J. Mod. Educ. Comput. Sci., 5(5), 18-27.
Li, D., Cui, B., Zuo, F., Zong, H. and Yu, W., 2023. Hydrological characteristics and water quality change in mountain river valley on Qinghai-Tibet Plateau. Appl. Water Sci., 13(4), p.104.
Makumbura, R.K., Mampitiya, L., Rathnayake, N., Meddage, D.P.P., Henna, S., Dang, T.L., Hoshino, Y. and Rathnayake, U., 2024. Advancing water quality assessment and prediction using machine learning models, coupled with explainable artificial intelligence (XAI) techniques like shapley additive explanations (SHAP) for interpreting the black-box nature. Results Eng., 23, p.102831.
Murdoch, P. S., Baron, J. S., Miller, T. L., 2000. Potential effects of climate change on surface‐water quality in North America 1. J. Am. Water Resour. Assoc., 36(2), 347-366.
Murphy, J., Chanat, J., 2023. Leveraging machine learning to automate regression model evaluations for large multi-site water-quality trend studies. Environ. Model. Softw., 170, 105864.
Nallakaruppan, M.K., Gangadevi, E., Shri, M.L., Balusamy, B., Bhattacharya, S. and Selvarajan, S., 2024. Reliable water quality prediction and parametric analysis using explainable AI models. Sci. Rep., 14(1), p.7520.
Nuanmeesri, S., Poomhiran, L., Kadmateekarun, P., Chopvitayakun, S., 2023. Improving the Water Quality Classification Model for Various Farms Using Features Based on Artificial Neural Network. TEM J. 12(4), 2144.
Oğuz, A., Ertuğrul, Ö. F., 2023. A survey on applications of machine learning algorithms in water quality assessment and water supply and management. Water Supply, 23(2), 895-922.
Okafor, C.O., Ude, U.I., Okoh, F.N. and Eromonsele, B.O., 2024. Safe drinking water: The need and challenges in developing countries. In Water quality-new perspectives. IntechOpen.
Omambia, A., Maake, B., Wambua, A., 2022. Water quality monitoring using IoT & machine learning. In 2022 IST-Africa Conference (IST-Africa) (pp. 1-8). IEEE.
Qie, G., Zhang, Z., Getahun, E., Allen Mamer, E., 2023. Comparison of machine learning models performance on simulating reservoir outflow: A case study of two reservoirs in Illinois, USA. J. Am. Water Resour. Assoc., 59(3), 554-570.
Rahimi, D., Hasheminasab, S., 2017. Analysis water quality by artificial neural network in bazoft river (iran). J Chem Pharm Res, 9, 115-121.
Sahoo, S., Russo, T. A., Elliott, J., Foster, I., 2017. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resour. Res., 53(5), 3878-3895.
Sahour, S., Khanbeyki, M., Gholami, V., Sahour, H., Kahvazade, I., Karimi, H., 2023. Evaluation of machine learning algorithms for groundwater quality modeling. Environ. Sci. Pollut. Res., 30(16), 46004-46021.
Sayahi, F., Divband Hafshejani, L., Tishehzan, P. and Abdolabadi, H., 2024. The combination of dimensionality reduction methods and machine learning algorithms in the optimization of Maroon River water quality prediction. IJSWR, 55(9), pp.1601-1615.
Sepahvand, A., Prelovšek, M., Nazari Samani, A. A., Wasson, R. J., 2021. SOLUTE TRANSPORT AND SOLUTIONAL DENUDATION RATE OF CARBONATE KARST IN THE SEMI-ARID ZAGROS REGION (SOUTHWESTERN IRAN). J. Cave Karst Stud., 83(3).
Shirazi, F., Zahiri, A., Piri, J., Dehghani, A. A., 2023. " Research Paper" Development a new hydraulic method for prediction of river flood discharge. J. atershed Manag. Res., 14(28), 110-123. (in persian)
Soleimani Motlagh, M., Talebi, A., Zareei, M., 2016. The study of drought on the quality of surface water resources in Kashkan watershed. J. Watershed Manag. Res., 6(12), 154-165. (in persian)
Yan, X., Zhang, T., Du, W., Meng, Q., Xu, X., Zhao, X., 2024. A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years. J. Mar. Sci. Eng., 12(1), 159.
Zaresefat, M., Derakhshani, R., 2023. Revolutionizing groundwater management with hybrid AI models: A practical review. Water, 15(9), 1750.