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Extended abstract

Introduction

Accurate streamflow prediction is essential for water resources management and flood control. Due to the
complex and nonlinear behavior of streamflow, traditional models are often inadequate. Machine learning
and deep learning algorithms offer more robust solutions; however, their accuracy can be affected by
sudden climatic fluctuations. Consequently, employing hybrid methods is necessary to improve prediction
accuracy. The literature review reveals that, despite the high capabilities of machine learning models, a
research gap still exists in managing multi-scale fluctuations in streamflow data. This underscores the
necessity of using hybrid approaches to enhance prediction accuracy. The innovation of this study is a
hybrid framework that simultaneously models both long-term patterns and short-term fluctuations by
integrating wavelet analysis, used to decompose the streamflow signal, with a powerful deep learning
model.

Materials and methods

In this study, to predict the streamflow of the Kurkursar River in Nowshahr, hydrological data including
daily precipitation and river discharge over a 20-year period at a daily resolution were utilized. The input
variables included daily precipitation (P;) and streamflow with time lags of one, two, and three days (Q1,
Qi2, Qi-3). Before the modeling process, data preprocessing was performed, which included reconstructing
missing data, removing anomalous data (outliers), and normalizing the values to improve data quality and
enhance their reliability in hydrological analyses. The hydrological data from the watershed were divided
into three subsets: training (70%), validation (15%), and testing (15%). Four streamflow prediction
scenarios were selected based on Pearson correlation coefficient analysis to identify sensitive variables and
determine the model inputs. The river streamflow modeling process was carried out using two algorithms:
Random Forest (RF) and the deep learning Long Short-Term Memory (LSTM) recurrent neural network.
Furthermore, to enhance the accuracy and improve the generalizability of the models, various wavelet
transform methods, including Daubechies 4 (Db4), Haar, and Mexican Hat wavelets, were used to extract
multi-scale features and combine them with the input data for the RF and LSTM models. This hybrid
approach facilitated the identification of complex spatio-temporal patterns in the hydrological time series.
After the final evaluation of the prediction models' performance, the Daubechies 4 (Db4) wavelet transform
was employed to optimize their coefficients and structural parameters. Performance evaluation metrics,
including the Coefficient of Determination (R?), Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Percent Bias (PBIAS), Mean Absolute Percentage Error (MAPE), and Kling-Gupta Efficiency
(KGE), were used to assess the accuracy of the models' predictions. Ultimately, the optimal models were
selected based on a comparative analysis of these quantitative criteria. Additionally, for data analysis and
visual presentation of the results, various plots were used, including scatter plots, time series of observed
and predicted data, and error distributions such as error histograms, normal density curves, cumulative
distribution functions of errors, and quantile-quantile (Q-Q) plots.

* Corresponding author: asharafati@srbiau.ac.ir


https://doi.org/10.22092/ijwmse.2025.369325.2115

425/ Watershed Engineering and Management Volume 17, Issue 4, 2026
DOI: 10.22092/ijwmse.2025.369325.2115

Results and discussion

The results showed that in streamflow prediction, previous time steps (different lags) were the most
important variables for predicting all subsequent horizons. The final results regarding the model scenarios
indicated that the first scenario (S1), which only used the precipitation variable, was the weakest performer
in all cases. Furthermore, the sixth scenario (S6), which utilized all available variables (P:,Qt-1,Qt2,Qt-3),
had the best performance in the training and testing phases for both standalone and hybrid models. The
research findings indicated that the hybrid Random Forest-Wavelet (RF-Wavelet) model had the best
performance in both the training (R2=0.907, RMSE=0.0192) and testing (R?2=0.942, RMSE=0.0106) phases.
Additionally, the standalone Long Short-Term Memory (LSTM) deep learning model had the weakest
performance in the training (R?=0.499, RMSE=1.6) and testing (R?=0.579, RMSE=1.149) phases. The
findings also showed that the Daubechies 4 wavelet , when combined with the Random Forest model, was
able to reduce the error of the standalone RF model by approximately 55%. Additionally, the wavelet, when
combined with the LSTM model, was able to increase the prediction accuracy by approximately 39%.
Furthermore, a comparison of the wavelet-hybrid models showed that the RF-Wavelet model reduced the
error by approximately 23% compared to the hybrid LSTM-Wavelet model.

Conclusion

In this research, various wavelet transform models, including Daubechies 4, Haar, and Mexican Hat, were
utilized for integration with RF and LSTM algorithms. Quantitative and qualitative analyses showed that
the Daubechies 4 wavelet transform had significant superiority in improving streamflow prediction
accuracy compared to other wavelet types within both RF and LSTM model frameworks. Therefore, this
type of wavelet transform was selected and used as the primary basis for integration with these two
prediction models. Examination of the error distribution pattern in the training data indicates a major
concentration of error values in regions adjacent to zero. The distribution of errors was observed to be
approximately symmetrical and showed considerable consistency with a normal distribution. This pattern
signifies the model's satisfactory accuracy in the training and data-fitting process. Ultimately, the present
study focused on the development of data-driven models to determine the optimal combination of predictor
variables for modeling and predicting river streamflow. This research demonstrated that integrating the
Daubechies 4 wavelet transform with the Random Forest (RF) model served as the optimal and superior
approach for predicting hydrological streamflow in the present case study. The aforementioned hybrid
model, in addition to significantly enhancing performance compared to standalone models by reducing
prediction error by up to 55%, showed notable superiority over complex deep learning models, including
LSTM and its associated hybrid combinations. This achievement highlights the importance of extracting
multi-scale time-frequency features using the wavelet transform and emphasizes its pivotal role in
improving the accuracy and generalizability of hydrological streamflow predictions, even in comparison to
advanced architectures of deep temporal models.
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Fig. 1. Location of the Kurkursar Watershed (Merufinia et al. 2023)
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Table 1. Model evaluation criteria
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Table 2. Dataset of statistical parameters for the study area

Statistical parameters of the studied area

Parameter Phase Minimum Maximum Average Stapda}rd Skewness Kurtosis
deviation

R(an'qnnff;" All Data 0 149 3.549 11.220 6.088 49,542

Discharge All Data 0.002 73.1 1.260 2116 13.025 317.687

(M¥/S)
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Table 3. Correlation between input and output variables for river flow prediction based on Pearson’s coefficient
P() Q(t-1) Q(t-2) Q(t-3) Q(t)
0.563 0.463 0.297 0.251 1
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Table 4. Selection of scenarios and various input combinations for streamflow prediction

Scenario number Input combinations Output
1 P@® Q)
2 P(®, Q(t-1) QW®
3 P(), Q(t-1), Q(t-2) QWM
4 P()), Q(t-1), Q(t-2), Q(t-3) QM
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Table 5. Values of the parameters for the models used in the study

Row Parameter or variable Selection range Selected value
Random Forest (RF)
1 Number of trees (n_estimators) 50-500 100
2 Maximum tree depth (max_depth) 3-20 10
3 Minimum samples to split a node (min_samples_split) 2-10 2
4 Minimum samples in leaves (min_samples_leaf) 1-5 1
5 Number of features for each split (max_features) log2 / Sqrt sqrt

Long short-term memory (LSTM)
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Table 5. Continued
Row Parameter or variable Selection range Selected value
Random Forest (RF)
1 Number of hidden layer neurons (units) 32-256 120
2 Dropout 0.2-0.5 0.3
3 Batch size 16-128 32
4 Epochs 50-200 100
5 Learning rate 0.001-0.01 0.001
6 Number of LSTM layers (num_layers) 1-3 1
7 Activation Function tanh -sigmoid - ReLU Tanh - ReLU
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Table 6. Evaluation metrics results of the RF and LSTM models in the training and testing phases

Scenario number Model name  Phase R? MAE RMSE MAPE (%) PBIAS (%) KGE
s Train 0.425 0.845 1.714 234.74 0.258 0.458
! Test 0.394 0.826 1.422 251.92 -7.346 0.588
S Train 0.720 0.313 1.227 43.918 0.232 0.678
2 RE Test 0.659 0.355 0.031 56.645 -3.0696 0.768
S Train 0.741 0.259 1.182 24.314 0.328 0.696
® Test 0.659 0.333 1.038 38.462 -7.074 0.783
s Train 0.748 0.253 1.181 25.647 0.594 0.682
4 Test 0.684 0.319 0.98 38.989 -3.181 0.773
S Train 0.901 0.0053 0.0197 0.688 -0.015 0.803
! Test 0.917 0.0072 0.012 0.793 -0.011 0.868
s Train 0.900 0.0035 0.019 0.509 -0.027 0.817
2 RE-Wavelet Test 0.942 0.0048 0.0105 0.548 0.023 0.926
s Train 0.891 0.0038 0.0207 0.543 -0.009 0.810
s Test 0.938 0.0050 0.0109 0.574 0.017 0.912
s Train 0.907 0.0036 0.0192 0.496 -0.016 0.820
4 Test 0.942 0.0049 0.0106 0.562 0.0165 0.902
s Train 0.310 0.895 1.872 248.56 -4.724 0.344
! Test 0.373 0.834 1.406 267.24 -11.56 0.495
s Train 0.472 0.611 1.641 132.33 3.211 0.514
2 LSTM Test 0.559 0.564 1.167 146.17 -0.869 0.657
s Train 0.485 0.597 1.622 138.2 -4.650 0.524
s Test 0.572 0.554 1.155 153.6 -9.374 0.661
s Train 0.499 0.567 1.6 124.66 -5.532 0.539
¢ Test 0.579 0.529 1.149 139.44 -10.583 0.679
s Train 0.789 0.641 1.264 172.79 -0.869 0.538
! Test 0.669 0.646 1.082 205.13 -410.6 0.552
s Train 0.842 0.296 0.980 34.323 -1.020 0.713
2 LSTM- Test 0.836 0.288 0.740 45.065 -2.991 0.774
s Wavelet Train 0.811 0.412 1.102 61.306 -1.648 0.646
s Test 0.758 0.391 0.902 71.6 -4.268 0.690
s Train 0.794 0.468 1.149 80.768 -1.843 0.627
¢ Test 0.724 0.474 0.962 96.81 -6.275 0.656
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T T R [ T 2
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Fig. 3. Time series plot of observational data and predictions from the single RF model during the training and testing phases
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Fig. 4. Time series plot of observational data and predictions from the hybrid RF-Wavelet model during the training and testing
phases
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Fig. 5. Scatter plot between observed data and river flow predictions of the single random forest model during the training and
testing phases

Prediction Error Plot 5 & 1072 Out-.ol'-Bag El:ror vs Number of Trees

60 . T T
e} Train
50 o Test 1
Zero Error
40 F b .
=l
=
30 b {1 5
(s )=} e
) { &
o 3
A -
=
=}

0 10 20 30 40 50 60 70 80 0 20 40 60 80 100
Observed Values Number of Trees

sholar Sz 050 Jae sl s Gt slhs laged 9 L5 0 slass 3 O0B slas o loges —F S
Fig. 6. Out-of-bag error analysis plot and number of trees, and prediction error plot for the single random forest model
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Fig. 7. Histogram of error and normal distribution during the training and testing phases for the single random forest model
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Fig. 9. Time series plot of observed data and predictions from the hybrid Random Forest-Wavelet model
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Fig. 10. Scatter plot of observed data and predictions of the single LSTM model during the training and testing phases
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Fig. 11. Time series plot comparing observed data and river flow predictions from the single LSTM model during the training and
testing phases



VECF P o les Y als el S ke g oiige | FEY

o LSTM - Train Data = LSTM - Test Data
Actual Actual

= — — — Predicied = 40 | | — — Predicted
—.E 60 T __E

== = 30

%. 40 %.

= =20

= =

2 20 | | Z 10 :

0 i 0
o 1000 2000 3000 4000 5000 o 500 1000 1500
Time step (Day) Time Step (Day)
e Hybrid - Train Data Hybrid - Test Data
Actual A0 Actual

= Predicted = Predicted
o 60 “= 30

& 1)

Yy Yy

28 40 £r 20

= =

Z 20 z 10

a a |

LA | . 1 .
0 0 - -
o 1000 2000 3000 4000 5000 o 500 1000 1500
Time Step (Day) Time Step (Day)

59051 9 Ugel Jolhe ;0 LSTM o,hie Jow ail3-ag, b, (swiion 5 (Slaalie glaosls fry Sloj (s Jloges =Y S
Fig. 12. Time series plot comparing observational data and river flow predictions from the single LSTM model during the training
and testing phases

LSTM-Test Data-Error Distribution

Prediction Error Plot o3 LSTM-Train Data- Error Distribution .
- . .
[JError Distribution m
— Normal Fit 0
0.25 = 00710
- 1598
1 = £ 0.5
Z 02 Z
P’ q g g
£ = =04
H 1 Eoas £
Z 3 Fos [
1 g 01 £
£ =2
0.05 [
J 0.1
: \ . . . . o N
] 10 20 30 40 s0 0 i 80 00 10 20 30 40 50 G0 5 0 5 10 15 20
Observed Values Prediction Error Prediction Error

05931 5 Uhigel Al e 9 ;0 LSTM 8yiie Jae (sl (e sl loged 5 Jloyi s g as ol Sgica logas -1V IS0
Fig. 13. Histogram of error and normal distribution, and prediction error plot for the single LSTM model during both the training
and testing phases
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Fig. 14. Cumulative distribution plot and quantile-quantile error plot for the single LSTM model
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