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Extended abstract

Introduction

The complexity of aquatic systems, their spatiotemporal variations, the high cost and time-consuming
nature of traditional testing methods, and the need for continuous monitoring all contribute to the difficulty
of monitoring and evaluating water quality. Therefore, artificial intelligence, machine learning, and deep
learning approaches are useful for predicting water quality given the diverse parameters involved and are
more cost-effective compared to traditional testing methods. There is no uniform algorithm that performs
optimally for predicting water quality, and different algorithms exhibit superior performance in different
contexts. The quality of rivers in the Zagros mountainous region has decreased due to the erosion of karst
formations, their passage through residential areas, changes in land use, drought, and climate change. Some
of these rivers, such as the Karkheh, Karun, and Dez, serve as the source of drinking water for a population
of over 10 million people. Therefore, changes in water quality pose increased risks and threats to the
drinking water supply of these settlements. Assessing the quality of water resources and developing a
suitable model will play an effective role in managing the required water supply. The present study aims to
identify the best machine learning algorithm for estimating the water quality parameters of the Cham Anjir
watershed while facilitating ongoing monitoring of the resource.

Materials and methods

Data from 321 samples of discharge and water quality parameters at the Cham Anjir hydrometric station
during the period 1969-2021 were used to select a suitable artificial intelligence model and to assessthe
quality of surface water resources in the Cham Anjir watershed. These samples included physical and
chemical indicators: TDS, TH, SAR, Na, Mg, Ca, and CI. Machine learning algorithms were employed to
model the water quality of the Cham Anjir watershed. Through iterative testing of different models, the
Support Vector Machine (SVM) and Classification and Regression Tree (CART) models were selected as
the best performers. A correlation matrix was used to evaluate relationships among the variables, and based
on these correlations, monthly discharge and monthly water quality indices—including TDS, TH, SAR,
Na, Mg, Ca, CI, EC, %Na, pH, HCO3, and temporary hardness—were analyzed. A total of 321 monthly
samples of the two key indices, TDS and TH, were studied over the statistical period of 1969-2021. To
evaluate the accuracy of the machine learning algorithms in water quality modeling, the following
performance indices were used: coefficient of determination (R?), mean squared error (MSE), and mean
absolute error (MAE).

Results and discussion

The p-value from trend tests confirmed the existence of an increasing trend at the 95% confidence level
for the two variables TDS and TH (surface water quality parameters of the Cham Anjir watershed) since
1985. The average TDS in the first period (1969-1984) was 286.6 mg/L, and in the second period (1985—
2021) it was 422.08 mg/L. The average TH in the first period (1969-1984) was 181.5 mg/L, and in the
second period (1985-2021) it was 278.6 mg/L.
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The results of the correlation matrix indicated that TDS has a strong correlation with EC and TH. TH has
a positive correlation with TDS, EC, HCOs, Ca, Cl, and Mg , and an inverse correlation with pH. The
machine learning algorithms SVM and CART successfully captured the increasing trend for the two
parameters of total hardness and total dissolved solids in the discharge of the Cham Anjir watershed. The
SVM algorithm with the linear kernel exhibited the best performance. In addition, the root mean square
error (RMSE) validation index also showed lower values for the SVM algorithm compared to the CART
algorithm. Therefore, SVM is more accurate in predicting water quality indicators.

Conclusion

Machine learning algorithms are effective for water quality modeling. The results indicated an increasing
trend in TDS and TH concentrations in the Cham Anjir watershed since 1985. SVM performed better than
CART in predicting TDS and TH. The findings suggest that decreasing river flow, increasing water
consumption, and karst geology influence TH and TDS concentrations in the quality of this watershed.
Water quality monitoring is essential for water resource management. For future estimates of water quality
in this context, the SVM algorithm is recommended.
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Table 1. Kernel relationships of Support vector machine

Linear sigmoid RBF Polynominal
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2 Classification and regression trees ' Over-Fitting
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Table 2. Significance level of P test of water quality in Cham Anjir Watershed in the period of 1969-2021

Water Quality index TDS TH
t 1985 1985
p-value (Two-tailed) < 0.0001 < 0.0001
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Fig. 6. Correlation between water quality elements and discharge in Cham Anjir Watershed in 1969-2021
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Table 3. Cross-validation results TH

Mean 1 2 3 4 5 6 7 8 9 10
MSE 224 10.08 11.05 18.005 8.4 10.8 9.2 8.3 12.8 6.4 128.8
r 0.99 0.998 0.998 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.98
MAE 2.6 2.17 2911 2.81 212 2.79 244 2.209 2.437 2.059 414
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Table 4. Cross-validation results TDS

Mean 1 2 3 4 5 6 7 8 9 10

MSE 530.5 186.5 151.5 48.2 116.2 81.3 726.6 207.3 3499.1 230.1 58.6
r 0.98 0.98 0.98 1 0.99 0.99 0.95 0.98 0.89 0.98 0.99
MAE 8.83 8.10 8.17 5.59 5.63 6.28 12.77 7.67 18.88 9.15 6.02

" Accuracy
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Table 5. Performance metrics (TH and TDS)

Index Training set Validation set
Statistic TH TDS TH TDS
MSE 8.228 473.226 12.378 226.705
r 0.999 0.976 0.999 0.988
MAE 2.386 8.485 2.885 10.799
Bias(Estimation) -0.025 -0.007
Number of support vectors 11 53
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Table 6. Predictions (Validation sample)

TDS TH
OBS TDS Prediction (TDS) OBS TH Total Prediction (TH)
2 250 281.2 44 1475 146.9
32 295 286.9 57 159 157.06
56 265 256.4 90 157.5 156
292 488 486.4 188 310 305.8
304 441 4455 266 365 3711
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Fig. 7. Prediction of water quality (TDS, TH) training samples a-c and validation b-d in SVM
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Table 7. The rule governing the modeling of the TDS element in the CART algorithm

Nodes TDS(Pred) Objects Rules

Node 1 361.44 311

Node 2 221.32 25 If Ec <= 380 then TDS = 221.3 in 8/0% of cases
Node 3 260.16 37 If Ec (380; 425] then TDS = 260.2 in 11.9% of cases
Node 4 285.29 31 If Ec (425; 466] then TDS = 285.3 in 10.0% of cases
Node 5 314.42 31 If Ec (466; 513] then TDS = 314.4 in 10.0% of cases
Node 6 347.71 63 If Ec (513; 578] then TDS = 347.7 in 20.3% of cases
Node 7 394.06 31 If Ec (578; 632] then TDS = 394.1 in 10.0% of cases
Node 8 427.16 31 If Ec (632; 683] then TDS = 427.2 in 10.0% of cases
Node 9 459.61 31 If Ec (683; 750] then TDS = 459.6 in 10.0% of cases
Node 10 549.9 31 If Ec > 750 then TDS = 549.9 in 10.0% of cases
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Table 8. The rule governing the modeling of the TH element in the regression and the classification tree algorithm

Nodes TDS(Pred) Objects Rules
Node 1 237.2 311
Node 2 135.3 32 If Cation <= 3.95 then TH = 135.3 in 10.3% of cases
Node 3 162.3 29 If Cation (3.95; 4.35] then TH = 162.3 in 9.3% of cases
Node ...
Node ...
Node ...
Node ... .
If Cation (4.35; 4.86] and %Na > 21.35 and Hco® <= 3.15 and PH <= 8.25 and Ec >
Node 117 1725 1 427and Ca<="1.60 then TH = 1725 in 0/3% of cases
Node 118 170 3 If Cation (4.35; 4.86] and %Na > 21.35 and Hco® <= 3.15 and PH <= 8.25 and Ec >
427 and Ca (1/60; 2/20] then TH = 170 in 1/0% of cases
Node 119 173 1 If Cation (4.35; 4.86] and %Na > 21.35 and Hco® <= 3.15 and PH <= 8.25 and Ec >
427 and Ca > 2.20 then TH = 173 in 0.3% of cases
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Fig. 8. Prediction of water quality elements (TDS, TH) training examples a-c and validation b-d in the algorithm
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Table 9. Comparison of validation of model machine models (RT and SVM) TDS

DS SVM Regration Tree
Cross-validation results Training Validation Obs-Pre
MAE 530.548 473.226 226.705 22.6
r 0.978 0.976 0.988 0.983
MSE 8.826 8.485 10.799 3294.2
RMSE 2.97 291 33 57.4
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Table 10. Comparison of validation of model machine models (RT and SVM) TDS
TH SVM Regression Tree
Cross-validation results Training Validation Obs-Pre
MAE 22.384 8.228 12.378 6.2
r 0.997 0.999 0.999 0.996
MSE 2.613 2.386 2.885 132.3
RMSE 1.6 1.5 1.7 11.5
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