In collaboration with Iranian Watershed Management Association

Document Type : Research Paper

Authors

1 Ph.D. Student of Architecture and Urbanism, Imam Khomeini International University, Qazvin, Iran

2 Professor, Water Engineering Department, Imam Khomeini International University, Qazvin, Iran

3 Associate Professor of Architectural Engineering Department, Imam Khomeini International University, Qazvin, Iran

Abstract

This study aims to determine the design strategy of a nuclear power plant near the river by assessing flood risk as a design precondition and the Darkhovin Nuclear Site near the Karoun River in Khuzestan Province was considered as a case study. In this study, by sampling the probabilistic space fitted to the flow rate and by filtering and removing flood flows that does not overflow from the river to the flood plain, the two-dimensional HEC-RAS hydraulic model was used to determine the depth and flow velocity within the power plant site. Frequency analysis of flood depth simulated by the model for different discharges showed that the frequency distribution of flow depth and the generating flood are different from each other. The safe design of a power plant site requires consideration of the many uncertainties that make it difficult to use conventional methods. In this research, for the first time, the Rosenbluet technique was used to evaluate the uncertainty and finally to determine the maximum possible water level for locating the reactor core. The results show that to create the maximum probable depth with a return period of 100 years, there should be a flood with a return period of 10,000 years in Karoun downstream of Ahvaz. The method presented in this research can be the basis of a standard for the safe design of nuclear power plants in the vicinity of rivers considering flood hazards.

Keywords