In collaboration with Iranian Watershed Management Association

Document Type : Research Paper

Authors

1 PhD Student, Faculty of Agriculture, University of Lorestan, Iran

2 Professor, Faculty of Agriculture, University of Lorestan, Iran

3 Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, ‎Education and ‎Extension Organization (AREEO), Tehran, Ira

4 Assistant Professor, Faculty of Agriculture, University of Lorestan, Iran

Abstract

The process of water diversion from the rivers always involve with sediment diversion in different sizes. The sediments that transported to the branch channel cause the expenditure to the water conveyance system and power-generation installations. One of the common methods to control the bed load and water diversion increasing, is to modify the approach flow pattern by the control structures. In this study, the efficiency of spur dikes in modifying of diversion flow to the intakes that located at curved channels are investigated. Experiments carried out in ten main groups in a 180° curve channel with a diversion located at the 118° on the external curve. Results of this study show that the sediment discharge ratio increased by discharge ratio increasing and severely related to it. The spur dike at upstream of the intake decreases the sediment discharge ratio by modifying the approaching flow pattern such that in C2 experiments, the sediment discharge ratio until the discharge ratio is equal to 0.05, 0.15, 0.25, 0.35 decreased up to 86.6, 73.3, 64.7, 46.7 respectively. But this effectiveness limited to Qr=0.4, because the strength of secondary flow diminished due to flow diversion increasing. Also, study of the effect of spur dike on sediment volume fraction in diversion channel show that, the maximum value of Vr diminished from 0.4 in type A experiments to 0.18 in type D experiments by reduction of the distance between the spur dike and the intake centerline. According to the experiments, positioning the spur dike at upstream of the intake change the dimensions of stream tube and decrease the diversion from near bed high-sediment flow and increase the diversion from near surface low-sediment flow. The dimensions of the separation zone severely decreased in type D experiments by presence of spur dike and discharge ratio increasing.

Keywords